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Abstract

We revisit the heterogeneous closed population multiple recapture problem, modeling individual-level

heterogeneity using the Grade of Membership model (Woodbury et al., 1978). This strategy allows us

to postulate the existence of homogeneous latent “ideal” or “pure” classes within the population, and

construct a soft clustering of the individuals, where each one is allowed partial or mixed membership in

all of these classes. We propose a full hierarchical Bayes specification and a MCMC algorithm to obtain

samples from the posterior distribution. We apply the method to simulated data and to three real life

examples.

Keywords: Capture-recapture, Dependence, Grade of Membership models, Heterogeneity, Hierarchical

Bayes, BIC, Log-linear models, Rasch model.

1 Introduction

From the early work of Petersen (1896) to counting in fish populations (but see Goudie and Goudie (2007))

through the 1960s, e.g., see Cormack (1968), most of the focus in the literature on capture recapture ap-

proaches to the estimation of the size of closed biological populations focused on the independence of cap-

tures or lists and homogeneous capture probabilities within lists. Attention to comparable problems in

non-animal populations came later but still had a similar focus and used by and large similar models. It

was only with the emergence of models for multivariate categorical data in the 1960s and a shift to other

types of applications that different proposals emerged for incorporating departures from this basic homoge-

neous independence structure in the form of heterogeneity of capture probabilities among individuals (units),
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e.g., see Sanathanan (1972, 1973) and/or associations between or among lists, see Fienberg (1972); Bishop

et al. (1975). Simultaneous consideration of both types of departures appeared in the literature only in

the 1990s, although even then, most approaches to heterogeneity assumed a very specific form, such as that

associated with the Rasch model (Rasch, 1980) from item response theory in psychometrics, e.g., see Darroch

et al. (1993); Agresti (1994); International Working Group for Disease Monitoring and Forecasting (1995a,b);

Fienberg et al. (1999). Similar models were introduced in the animal multiple recapture literature but with

different notation, e.g., see Norris and Pollock (1996). In some applications such approaches have proven

quite successful but in others we appear to require a more flexible form of latent variable model.

In this paper we propose an individual mixture approach to dependence in multiple recapture problems

based on the Grade of Membership (GoM) model introduced by Woodbury et al. (1978) and developed from

a hierarchical Bayesian latent variable perspective by Erosheva (2002). For full details and an application

to the analysis of disability data, see Erosheva et al. (2007). This mixture model has a different interpreta-

tion than most others in the statistical literature and especially those used in a multiple recapture context,

c.f. Pledger (2000, 2005).

In section 2, we describe the GoM model and then explain how it can be adapted for use in the context

of multiple recapture estimation. In section 3, we outline the details regarding estimation using Monte Carlo

Markov chain methodology. Then, in section 4, we apply the new model to a series of examples drawn

from the literature and compare the resulting estimates to those derivable from log-linear models and Rasch

models for heterogeneity. We conclude with a discussion of where we see the new model fitting into the array

of existing approaches as a practical tool for applied researchers.

2 Modeling heterogeneity using the Grade of Membership model

2.1 The Grade of Membership model

The Grade of Membership (GoM) model has been used to get a low dimensional representation for high-

dimensional categorical data where we think of each individual as a weighted combination of a small number

of “idealized” individuals or “pure types” within the population of interest.

We assume the existence of a specific number, K, of such “extreme classes” or “pure types”. Sup-

pose that there are N individuals on the population. For the ith individual, for i ∈ {1, . . . , N}, we
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associate a J-dimensional binary vector of manifest variables xi = (xi1, ...xiJ). For any individual that

is a full member of the kth extreme class (i.e. an “ideal” individual of the kth class), we assume that

the probability of a positive response in the jth entry of the manifest variables vector is the same, i.e.,

Pr(Xij = 1|ith individual in kth class) = λjk.

We associate each individual with its own K-dimensional “membership vector” gi = (gi1, gi2, ..., giK)

representing how much of a member of each class this particular individual is (gik > 0,
∑K
k=1 gik = 1). We

operationalize the idea of “partial membership” by setting the distribution of each manifest variable given

the membership vector as

p(xij |gi) =
K∑
k=1

gijkλ
xij

jk (1− λjk)1−xij .

In what follows, we use p(·) to denote indistinctly the probability density function or the probability mass

function of the argument, as needed. We further assume that the item responses j are conditionally inde-

pendent given membership vectors. This condition, sometimes referred as latent conditional independence

or local independence (Holland and Rosenbaum, 1986), expresses the idea that the membership vector g

completely explains the dependence structure between the J binary manifest variables. By making this

assumption, we get

p(xi|gi) =
J∏
j=1

K∑
k=1

gijkλ
xij

jk (1− λjk)1−xij . (1)

If we further assume that for each individual, the (unobserved) membership vectors gi are drawn indepen-

dently from a common distribution Gα, with support on the K − 1 dimensional probability simplex, ∆, we

can construct the observed likelihood

p(xi) =
∫

∆

J∏
j=1

K∑
k=1

gijkλ
xij

jk (1− λjk)1−xijGα(dg). (2)

The net effect is that we are representing a collection of 2J counts in terms individual mixtures of K pure

types, thus producing a very substantial reduction in dimensionality. The only problem is we still have to

determine the pure types for a given value of K.

Erosheva et al. (2007) have shown that the GoM model in (1) admits an augmented data representation
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that leads to the augmented data likelihood

p(x, z|λ, g) =
N∏
i=1

J∏
j=1

K∏
k=1

(
gikλ

xij

jk (1− λjk)1−xij

)zijk

, (3)

with zi = (zi1, ..., ziJ) ∈ Z = {1, 2...,K}J and zijk = I(zij = k). From here the observed data likelihood can

be easily obtained through marginalization

p(x|α, λ) =
N∏
i=1

∫
∆

∑
z∈Z

J∏
j=1

K∏
k=1

(
gkλ

xij

jk (1− λjk)1−xij

)zjk

Gα(dg). (4)

The representation in Eq. (3) is particularly important because we use it as the basis for the posterior

sampling strategy we describe in Section 2.2.2.

2.2 Hierarchical Bayes formulation of multiple recapture estimation of a closed

population total using the Grade of Membership model

2.2.1 Basic setup

Consider a closed population of N individuals, with N unknown. From this population we perform J capture

events. These “capture events” can be understood as the physical capture of animals in ecology applications

or as the elaboration of lists in epidemiological applications. We represent the complete capture history of

the ith individual (i = 1, ..., N) by a vector xi = (xi1, xi2, ..., xiJ) with xij = 1 if the i-th individual was

captured in the jth capture event and 0 otherwise. We assume that from the N individuals present in the

population, we are only able to capture or observe n of them (n ≤ N), where all capture history vectors of

the form xi = (0, 0, ..., 0) are missing for all the cases. We arrange the capture history so that xi = (0, 0, ..., 0)

for all i = n+ 1, ..., N .

2.2.2 Model specification

Using Eq. (3) for the likelihood of the GoM model and understanding N as a parameter, we get that the

full joint posterior for the complete data will be,

p(N,α, λ, g|x, z) ∝
(
N

n

)
p (N,α, λ, g)

N∏
i=1

J∏
j=1

K∏
k=1

(
gikλ

xij

jk (1− λjk)1−xij

)zijk

I{n+1,n+2,...}(N), (5)
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where p(N,α, λ, g) is the joint prior distribution of (N,α, λ, g). If we further assume that N , α and λ are a

priori independent and that given α, gi are independent for all i, the above expression simplifies to

p(N,α, λ, g|x, z) ∝
(
N

n

)
p(N)p(α)p(λ)

N∏
i=1

p (gi|α)
J∏
j=1

K∏
k=1

(
gikλ

xij

jk (1− λjk)1−xij

)zijk

I{n+1,...}(N). (6)

We complete the specification by setting the hyper priors

λjk
iid.∼ Beta(η1, η2), (7)

gi|α
iid.∼ Dirichlet(α1, α2, ...., αK), (8)

p(N) ∝ (N − l)!
N !

I{[l,Nmax]∩N}(N) for some l < Nmax and Nmax large enough. (9)

The selected prior for N in Eq. (9) has the advantage of leading to proper and tractable expressions for

the posterior while including many relevant cases, such as the truncated uniform (l = 0) and the truncated

Jeffrey’s (l = 1) (Fienberg et al., 1999). The upper truncation limit, Nmax, is included for computational

convenience and because its inclusion guaranties a proper posterior. Also, we note that, although the prior

distribution for N in principle allows it, we will not want N to take values below the observed count, n.

This will be automatically enforced during the posterior computation, because the likelihood in Eq. (6) will

in fact truncate and re normalize the posterior according to the data, making values of N smaller than n to

have probability zero.

We follow Erosheva et al. (2007) by reparameterizing α = (α0 · ξ1, ..., α0 · ξK) with α0 > 0 and
∑
k ξk = 1

and setting the hyper priors

α0 ∼ Gamma(τ, β), (10)

ξ ∼ Dirichlet(1, ..., 1), (11)

where β is the inverse scale parameter. Under this reparametrization we can interpret ξk as the proportion

of the captures that belongs to the kth mixture component and α0 > 0, as a parameter governing the spread

of the membership distribution.

5



3 Bayesian posterior estimation using Monte Carlo Markov chain

If N were known, generating samples from the posterior distribution in Eq. (6) would be a straightforward

exercise, directly applying the algorithm developed in Erosheva et al. (2007). Here we present an adaptation

of this algorithm to carry out our computations.

The main difficulty in constructing a MCMC sampler for this case is the fact that, as Basu and Ebrahimi

(2001) and Fienberg et al. (1999) point out, N determines the length of the vectors g and z, and N is itself

a parameter that we have to estimate. For this reason we consider the partitions g = (g1, g2), z = (z1, z2),

x = (x1, x2) such that the first part (g1, z1, x1) corresponds to all individuals who are present in the sam-

ple (i = 1, ..., n), and the second part (g2, z2, x2) corresponds to all the individuals who were not captured

(i = n+ 1, ..., N).

From the specification of the model in Eq. (6), we can readily write down the full conditional posteriors

for λ, z1 and g1, and obtain the (m+ 1)-th draw for a Gibbs sampler,

• z1: for i = 1...n and j = 1...J draw

z
(m+1)
ij

indep∼ Discrete(1,...,J)(p1, ..., pK), (12)

with pk = gikλ
xij

jk (1− λjk)1−xij .

• λ: for j = 1...J and k = 1...K draw

λ
(m+1)
jk

indep∼ Beta

(
η1 +

N∑
i=1

xikzijk, η2 +
N∑
i=1

(1− xij) zijk

)
. (13)

• g1: for i = 1...n draw

g
(m+1)
i

indep∼ Dirichlet (α1 + zi+1, ..., αK + zi+K) , (14)

where zi+k =
∑J
j=1 zijk.

The full conditional distribution for α does not have any recognizable form. Thus we use a Metropolis-

Hastings within Gibbs step (Robert and Casella, 2004). Erosheva (2002) proposes a two-stage sampling
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strategy, obtaining samples for α0 and for ξ through the use of two separate Metropolis-Hastings steps. We

have achieved better results treating the vector α as a whole using the following log scale Gaussian random

walk Metropolis-Hastings step:

1. (Proposal step) Obtain a sample for α∗ = (α∗1, ..., α
∗
K) from

α∗k
indep.∼ lognormal(α(m)

k , σ2),

for k = 1, ...,K. The parameter σ2 is a tuning parameter that we have to optimize to achieve a good

balance between acceptance and exploration of the support (Robert and Casella, 2004). Note that the

distribution of α∗ depends explicitly on the current value of α.

2. (Acceptance step) compute

r = min

1,

(
K∏
k=1

α∗k
αk

)(
α∗0
α0

)τ−1

e−β(α∗0−α0)

[
Γ(α∗0)
Γ(α0)

K∏
k=1

Γ(α∗k)
Γ(αk)

]N K∏
k=1

(
N∏
i=1

gik

)α∗k−αk
 ,

and make

α(m+1) =

 α∗ with probability r.

α(m) with probability 1− r.

To obtain a full conditional posterior of (N, z2, g2), we first note that it only depends on (α, λ). Then we

apply the well known factorization

p(N, z2, g2|...) = p(N, z2, g2|α, λ)

= p(N |α, λ)p(z2|N,α, λ)p(g2|z2, N, α, λ),

and construct the relatively simpler samplers for the incomplete conditionals p(N |α, λ) and p(z2|N,α, λ) by

integration,

p(N |α, λ) =
∫
p(N, z2, g2|α, λ)d(g2, z2)

∝
(
N

n

)
p(N)

 Γ(α+)
Γ(α+ + J)

∑
z∈Z

(
K∏
k=1

Γ(αk + z+k)
Γ(αk)

)
J∏
j=1

(
1− λjzj

)N−n (15)

for N integer such that N ≥ n; and
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p(z2|N,α, λ) =
∫
p(z2, g2|N,α, λ)dg2

∝
N∏

i=n+1

( K∏
k=1

Γ (αk + zi+k)

)
J∏
j=1

(
1− λjzij

) (16)

where Z = {1, 2, ...,K}J , zjk = I{zj=k}, z+k =
∑J
j=1 zjk and α+ =

∑K
k=1 αk.

Finally we note that p(g2|z2, N, α, λ) is just the full conditional distribution of g2,

p(g2|N, z2, α, λ) ∝
N∏

i=n+1

K∏
k=1

g
αk+zi+k−1
ik . (17)

One single joint sample (N, z2, g2)(m+1) from the full conditional distribution p(N, z2, g2|...) will be then

constructed sampling sequentially from the distributions in Eqs. (15), (16) and (17). Note also that for our

selection of priors, Eq. (15) is truncated negative binomial on N−n (Fienberg et al., 1999), and that a sample

from Eq. (17) can be constructed as N − n independent samples from a Dirichlet(α1 + zi+1, ..., αK + zi+K)

distribution, just as in Eq. (14).

4 Examples

We have applied our new model and method to a number of examples from the literature; here we report on

four examples, the first of which is based on a simulation from the GoM model in Eq. (1). The remaining

three examples are based on actual data drawn from a series of applications with increasing numbers of lists:

diabetes patients in Casale Monferrato, Italy (Bruno et al., 1994); children suffering a specific congenital

anomaly in Massachusetts (Wittes et al., 1974; Fienberg, 1972); and killings and disappearances due to

political violence in the District of Chungui, Peru (Ball et al., 2003).

For all the examples we have fitted the GoM model using the MCMC algorithm from Section 2.2.2 for
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different values of K using the diffuse priors

λjk
iid∼ Beta(1, 1),

α0 ∼ Gamma(1, 2),

ξ ∼ DirichletK(1, ..., 1),

p(N) ∝ I{N<105∩N}.

For comparison, we have also fitted independence and more complex log-linear models (Fienberg, 1972) and

the Bayesian Rasch model from Fienberg et al. (1999). The selection of the “best” log-linear model has been

performed using stepwise search based on the Bayesian Information Criterion (BIC). The stepwise procedure

was implemented similarly to a regression model search: starting from the independence model, we added

new interaction terms, one at a time, so that at each step we obtained the biggest improvement in the BIC

score computed over the observed data, until no further improvement was possible.

For each example we present the point estimate (N̂) and a 95% interval. For the log-linear models the

interval is an equal tail 95% bootstrap confidence interval (Efron and Tibshirani, 1993) and for the Bayesian

models (GoM and Rasch) it is an equal tail 95% credible interval constructed from the posterior sample.

The point estimates presented for the Bayesian models are the posterior modes.

The chains we obtained fitting the GoM models were reasonably well behaved, converging to the station-

ary distribution after a burn in period of 10000 iterations for K = 2 and 20000 for K = 3 for all the cases

except for the Perú data, where we required longer runs of 30000 iterations for K = 3, 55000 for K = 4

and 30000 for K = 5. In all cases we took a total of 100000 samples and sub sampled the resulting chains

retaining one sample every t samples and discarded the rest, with t ranging from 10 to 40.

9



List-4
Yes No

List-3 List-3
Yes No Yes No

List-2
Yes List-1 Yes 161 40 48 10

No 494 88 41 1

No List-1 Yes 73 11 5 2
No 123 193 33 677

Table 1: Simulated data (N = 2000, observed n = 1323)

Model df Deviance N̂ 95% Interval
Independence 10 83.06 2425 [2269, 2586]
Log-linear-BIC ([3][12][24]) 8 12.46 1994 [1878, 2140]
Bayesian Rasch — — 2773 [2511, 3252]
Bayesian GoM (K = 2) — — 2001 [1881, 2235]
Bayesian GoM (K = 3) — — 2060 [1909, 2327]

Table 2: Estimates for the simulated data (N = 2000, observed n = 1323)

4.1 Simulated data (J = 4)

We simulated 2000 draws from the GoM model (1) with J = 4 lists, K = 3 extreme profiles, membership

vectors gi
iid∼ Dirichlet [0.8 · (0.1, 0.5, 0.4)] and extreme profile capture probabilities

[λjk] =



0.5 0.09 0.2

0.1 0.7 0.01

0.29 0.14 0.1

0.05 0.035 0.35


The resulting data is summarized in the 24 cross classification in Table 1. Our goal is to predict the total

(known to be N = 2000) using only the counts on the cells other than (0, 0, 0, 0).

In Table 2 we present a summary of our results. As expected, the independence model fits poorly (with a

deviance of G2 = 83.06 on 10 df.), and overestimates the total. The BIC-based stepwise search in the space of

hierarchical log-linear models selects the model [3][12][24], which provides both a very good fit and estimate

of N . In contrast, the Bayesian Rasch model misses the true value, grossly overestimating it. This appears

to be due to the inability of the Rasch model to accommodate negative dependence. Negative dependence

may also explain why the independence model also overestimates the true value of N .
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Clinics(4)
Yes No

Hospitals(3) Hospitals(3)
Yes No Yes No

Prescriptions(2)
Yes Reimbursements(1) Yes 58 46 14 8

No 157 650 20 182

No Reimbursements(1) Yes 18 12 7 10
No 104 709 74 ??

Table 3: Diabetes data

For fitting the GoM models we have applied the MCMC algorithm in 2.2.2, taking 100, 000 samples and

discarding the first 20, 000 as a burn in period. The resulting samples are well behaved, leading to estimates

close to the true value. Interestingly both two GoM (K = 2 and K = 3) models lead to good estimates for

N , even when the data was actually generated using K = 3.

During the creation of this example we have tried different combinations of parameters. In most cases,

the parameter N was correctly estimated by the GoM models, as might be expected, and also by the log-

linear-BIC. In some other cases cases though, only the GoM model produced a good estimate. However

in many of these difficult cases we were unable to consistently replicate the simulation and obtain good

estimates every time.

4.2 Diabetes data

Bruno et al. (1994) used multiple recapture data from four sources to estimate the prevalence of diabetes

mellitus in Casale Monferrato, Italy on October 1st, 1988. They observed a total number of n = 2069 known

cases and applying log-linear modeling to obtain an estimate of N̂ = 2, 771 for the total number of cases.

When they first stratified the data and then fit the same log-linear model, their estimate was N̂ = 2, 586.

These data have been re analyzed a number of times, e.g., International Working Group for Disease Moni-

toring and Forecasting (1995a); Fienberg et al. (1999). Table 3 shows the cross classification of the counts

for the four different sources used to identify the known diabetes cases as reported by Fienberg et al. (1999).

Table 4 shows a summary of our estimates using this dataset. As in the previous example, we infer from

the deviance that the fit of the independence model is poor. Both the Rasch and the “best” log-linear ap-

proaches give estimates very close to the ones reported by Bruno et al. (1994), International Working Group

for Disease Monitoring and Forecasting (1995a), i.e., N̂ = 2771. The log-linear-BIC model also provides a
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Model df Deviance N̂ 95% Interval
Independence 10 217.48 2251 [2228, 2275]
Log-linear-BIC ([12][23][24][34]) 5 7.617 2771 [2543, 3097]
Bayesian Rasch — — 2680 [2549, 2934]
Bayesian GoM (K = 2) — — 2293 [2250, 2347]
Bayesian GoM (K = 3) — — 2640 [2483, 3482]

Table 4: Estimates for the diabetes data

List-I
Yes No

List-II List-II
Yes No Yes No

List-III List-III List-III List-III
Yes No Yes No Yes No Yes No

List-IV
Yes List-V Yes 2 8 3 5 0 23 0 30

No 5 25 1 22 3 37 2 97

No List-V Yes 2 18 5 36 0 34 3 83
No 1 19 4 27 1 37 4 ??

Table 5: Congenital anomalies data

very good fit to the observed data (G2 = 7.617 on 5 df.)

The GoM model with K = 2 gives an estimate of N very close to the independence model, which we

believe is a bad estimate; however, when we increase the number of extreme profiles to K = 3, the GoM

model again estimates N in the vicinity of 2,700, as does the best log-linear model and the Rasch model.

4.3 Congenital anomalies data (J = 5)

Fienberg (1972) reports on a 5-list multiple recapture dataset originally analyzed by Wittes et al. (1974)

regarding positive diagnostics of a specific congenital anomaly in children in Massachusetts. The dataset

presents five available sources of positive diagnostics, labeled List-I to List-V, and a total of n = 537 known

cases. Fienberg (1972) reports a best estimate of N̂ = 634 using the loglinear model [12][13][24][45].

In Table 5 we reproduce the 25 cross classification table as reported by Fienberg (1972). Table 6 shows

our estimates for this dataset. As in all previous cases, independence seems to be a bad fit (G2 = 93.45 on

25 df.). The best log-linear model chosen by a stepwise application of BIC is slightly simpler than the one

proposed by Fienberg (1972), yielding to the slightly lower estimate N̂ = 620 (G2 = 30.56 on 22 df).
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Model df Deviance N̂ 95% Interval
Independence 25 93.45 639 [620, 659]
Log-linear-BIC ([12][13][45]) 22 30.56 620 [600,644]
Bayesian Rasch — — 712 [661, 824]
Bayesian GoM (K = 2) — — 605 [584, 636]
Bayesian GoM (K = 3) — — 622 [596, 706]
Bayesian GoM (K = 4) — — 620 [590, 717]

Table 6: Estimates for the congenital anomalies data

All the estimates from the GoM model are close to one another and give similar 95% intervals, suggesting

that K = 2 might offer sufficient heterogeneity to represent that which is present in this sample. As in the

previous cases, the estimates obtained from fitting the GoM models are very close to the estimate obtained

from the log-linear-BIC. The Rasch model, however, gives an estimate well above the rest. This suggess again

that the Rasch model is producing an overestimate due to to its inability to capture negative dependence.

4.4 Killings in Chungui (J = 6)

Ball et al. (2003) in a report published as part of the Peruvian Truth and Reconciliation Commission Final

Report (Comisión de la Verdad y Reconciliación, 2003) analyzed multiple capture data to estimate the total

number of people assassinated or disappeared due to political violence in Peru between 1980 and 2000. There

were a total of six available lists documenting known cases of killings and disappearances, although one of

them was restricted to only one geographical location and some others were quite small. Ball et al. (2003)

estimations were constructed applying 3-list log-linear modeling to a total of 58 geographic strata, collapsing

some of the sources based on homogeneity considerations.

Table 7 shows data corresponding to the district of Chungui, department of Ayacucho, where a total of

n = 1366 unique individuals could be identified. This district corresponds a subset of stratum 25 in Ball

et al. (2003)1, and is the only geographical location for whom we have six simultaneously available lists. As

we see in Table 7, the resulting cross classification is extremely sparse.

Table 8 summarizes our computations using different models. As in all previous cases, independence

did not provide a good fit to the data (G2 = 709.6 on 56 df.), but the log-linear-BIC approach yielded an

1Stratum 25 comprised the districts of Chungui and Luis Carranza, in the department of Ayacucho. The estimate from Ball
et al. (2003) (as appears in Electronic Annex #12 Comisión de la Verdad y Reconciliación (2003)) for the whole stratum 25 is

N̂ = 2408.
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List-VI
Yes No

List-V List-V
Yes No Yes No

List-IV List-IV List-IV List-IV
Yes No Yes No Yes No Yes no

List-III

Yes List-II
Yes List-I Yes 0 0 1 0 0 0 2 0

No 0 0 0 0 0 0 0 3

No List-I Yes 0 0 14 1 0 0 51 4
No 0 0 1 1 0 0 1 8

No List-II
Yes List-I Yes 0 0 0 0 0 0 0 0

No 0 0 2 0 0 0 0 1

No List-I Yes 0 1 4 237 0 0 18 286
No 0 0 0 727 0 0 3 ??

Table 7: Killings in Chungui data

Model df Deviance N̂ 95% Interval
Independence 56 709.6 1991 [1908, 2098]
Log-linear-BIC ([14][23][34][36]) 52 56.63 2270 [2138, 2436]
Bayesian GoM (K = 2) — — 2244 [2086, 2437]
Bayesian GoM (K = 3) — — 2217 [2068, 2417]
Bayesian GoM (K = 4) — — 2231 [2064, 2390]
Bayesian GoM (K = 5) — — 2211 [2063, 2401]

Table 8: Estimates for killings in Chungui data. We were not able to fit the Bayesian Rasch model.

excellent fit (G2 = 6.63 on 52 df.), giving an estimate of N̂ = 2270.

We were unable to fit the Rasch model in this example because all of our attempts to sample from the

posterior distribution ended up with MCMC chains that were badly behaved, suggesting the inadequacy of

the Rasch model to capture the specific type of heterogeneity present in this sample. In contrast, all GoM

models behaved very well, giving estimates very close to the best log-linear model, although with a slightly

wider 95% interval. The similarity of the estimates for K = 2, 3, 4 and 5 suggests that K = 2 would be

enough to capture the heterogeneity structure present in this sample.

5 Discussion

In this article we have described a Bayesian version of the Grade of Membership model first introduced by

Woodbury et al. (1978) and shown how we can use it to model individual level heterogeneity in multiple

recapture contexts. We illustrated the methodology in a series of examples and compared the estimate from
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our method with those from more traditional approaches.

The examples we analyzed share some interesting characteristics. First, in none of them does the inde-

pendence assumption lead to good results. In fact, with the possible exception of the congenital anomalies

data where there appears to be a canceling effect of positive and negative dependencies, assuming indepen-

dence led to either over- or under-estimation of N , with deceptively tight confidence bounds. In contrast,

when we allowed for more complex log-linear models and selected a best one by a stepwise search based on

the BIC score, the results were consistently good. The use of the GoM model to estimate the population

size always gave results comparable with the best log-linear models chosen by stepwise search based on BIC.

In our examples, low values of K appear to do a remarkably good job of capturing or approximating the

heterogeneity structure present in the samples, leading to reasonable estimates of N in virtually all cases.

In fact, in the examples and in other analyses we have performed, once for a given value of K we obtained

an estimate comparable to that of the “best” log-linear model, all the subsequent GoM models, with higher

values of K, yielded similar estimates. We believe this is due to the relatively small number of lists (4, 5,

and 6) as compared with the large number of items in other applications of the GoM approach, e.g., J = 16

binary disability measures in Erosheva et al. (2007). Thus we believe one need not search for an “optimal”

value of K for typical multiple recapture applications, and we can expect that K = 2 or K = 3 will suffice

in almost all contexts.

A formal evaluation of the best number of extreme profiles, however, remains an open issue, especially

for large numbers of lists. Erosheva et al. (2007) explored model selection with the Bayesian GoM model

in the context of their analysis of disability data. In their analysis with simulated data they explored the

performance of DIC, BICM, BIC, truncated Chi squared (χ2
tr) and AICM indices and obtained good results

with the last three. The application of these indices to evaluate the fit of the models based on the observed

counts in the contingency tables looks like a natural starting point in our problem.

Our final example, estimating killings in an area of Peru, illustrates the applicability of different modeling

approaches to sparse data situations, ones where most statistical analysts have in the past been reluctant to

apply modern multiple recapture methods.

15



Finally, we note that Pledger et al. (2003) and others have explored the use of population-level mixture

models and closed population estimators to the problem of open populations. We think that our individual-

level mixture models may provide a useful complement to these approaches in such contexts.

6 Appendix A - Derivation of equations (15) and (16)

1. p(N |α, λ) (Eq. (15))

p(N |α, λ) =
∫
p(N, z2, g2|α, λ)d(g2, z2)

∝ p(N)
(
N

n

)∫ N∏
i=n+1

p (gi|α)
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(gik (1− λjk))zijkd(g2, z2)
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)
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)(
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)
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N−n

=
(
N

n

)
p(N)
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k=1 Γ(αk)

∑
z∈Z

∫
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(
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(
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where Z = {1, 2, ...,K}J , zjk = I{zj=k}, ∆ is the K − 1 dimensional probability simplex and z+k =∑
j zjk. Solving the integral, we get

p(N |α, λ) ∝
(
N

n

)
p(N)

 Γ(α+)∏K
k=1 Γ(αk)

∑
z∈Z

∏K
k=1 Γ(αk + z+k)
Γ(α+ + z++)

J∏
j=1

(
1− λjzj

)N−n

=
(
N

n

)
p(N)

 Γ(α+)
Γ(α+ + J)

∑
z∈Z

(
K∏
k=1

Γ(αk + z+k)
Γ(αk)

)
J∏
j=1

(
1− λjzj

)N−n
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2. p(z2|N,α, λ) (Eq. (16))

p(z2|N,α, λ) =
∫
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