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Abstract

In categorical data, it is typically the case that some combinations of variables are theo-

retically impossible, such as a three year old child who is married or a man who is pregnant.

In practice, however, reported values often include such structural zeros due to, for example,

respondent mistakes or data processing errors. To purge data of such errors, many statistical

organizations use a process known as edit-imputation. The basic idea is first to select reported

values to change according to some heuristic or loss function, and second to replace those values

with plausible imputations. This two-stage process typically does not fully utilize information

in the data when determining locations of errors, nor does it appropriately reflect uncertainty

resulting from the edits and imputations. We present an approach that integrates editing and

imputation for categorical microdata with structural zeros. We rely on a Bayesian hierarchical

model that includes (i) a Dirichlet process mixture of multinomial distributions as the model

for the underlying true values of the data, with support restricted to the set of theoretically

possible combinations, (ii) a model for latent indicators of the values that are in error, and (iii)

a model for the reported responses for values in error. We illustrate this integrated approach

using simulation studies with data from the 2000 U. S. census, and compare it to a two-stage

edit-imputation routine. Supplementary material is available online.
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1 Introduction

In surveys with multiple categorical data items, the reported data frequently include erroneous

values, i.e., combinations of answers that are theoretically impossible or inconsistent across items.

These could result from respondent error; for example, a parent accidentally checks boxes indicating

that his child is five years old and has attained a university degree, or a person selects “male” for

sex and “yes” to answer whether or not the person ever had a hysterectomy. They also could result

from data processing errors (Groves and Lyberg, 2010; Biemer, 2010). Regardless of the source, left

uncorrected, erroneous values can diminish the quality of analysis and interpretation of the data

(Fuller, 1987; Groves, 2004; Durrant and Skinner, 2006).

Recognizing this, many data stewards such as national statistics institutes (NSIs) purge data

of overtly erroneous values in a process known as edit-imputation. Edit-imputation is particularly

salient for organizations sharing data with the public: releasing files with erroneous values could

cause the public to lose confidence in the quality of the data and in the organization more broadly. In

fact, many data stewards invest quite substantial resources in edit-imputation processes, exceeding

30% of survey budgets in some NSIs (Granquist and Kovar, 1997; Norberg, 2009).

It is generally impractical and cost-prohibitive to re-contact all respondents with potentially

erroneous values. Thus, many data stewards rely in part on automated methods of edit-imputation,

in which algorithms select and “correct” erroneous values with minimal human intervention. These

automatic editing systems typically run in two steps, an error localization step in which some

set of each record’s values is determined to be in error, and an imputation step in which those

values are replaced with plausibly correct values (De Waal et al., 2011). Most editing systems

use variants of the error localization suggested by Fellegi and Holt (1976): for any record with

impossible reported values, change the minimum number of fields (variables) needed to make that

record a theoretically possible observation (e.g., see Winkler, 1995; Winkler and Petkunas, 1997).

The subsequent imputation step usually is a variant of single imputation generated from a hot deck

or parametric model (e.g., Winkler, 2003, 2008).

Kim et al. (forthcoming) point out that Fellegi and Holt approaches to edit-imputation—

henceforth abbreviated as F-H approaches—have two key drawbacks. First, they do not fully
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utilize the information in the data in selecting the fields to impute. To illustrate, consider an

example where the variables include sex, hysterectomy status, and age in years. When a record

is reported as a male with a hysterectomy who is 20 years old, it seems more plausible to change

status to no hysterectomy than to change sex to female, because hysterectomies are relatively

uncommon among 20 year old women (Merrill, 2008). The minimum number of fields criterion

results in changing one of sex or hysterectomy status. The data steward might select among these

two solutions based on some heuristic, e.g., change the variable that is more likely to have errors

according to experience in other contexts. Second, the organization generally cannot be certain

that a F-H (or any) error localization has identified the exact locations of errors. This uncertainty

is ignored by specifying a single error localization; hence, analyses of data corrected by F-H ap-

proaches underestimate uncertainty (Kim et al., forthcoming). For example, there are 20 year old

women with hysterectomies, and inferences should reflect that possibility (as well as other feasible

variations, including changing multiple variables) as increased uncertainty.

In this article, we propose an integrated approach to edit-imputation for categorical data that

addresses these two shortcomings of the F-H paradigm. Our approach relies on a Bayesian hierar-

chical model that includes (i) a Dirichlet process mixture of multinomial distributions, also known

as a latent class model, for the underlying true values of the data with support that excludes the

set of structural zero cells, (ii) a model for latent indicators of the values that are in error, and (iii)

a model for the reported responses for values in error. A similar strategy was used by Kim et al.

(forthcoming) for data with only continuous variables, in which true values are required to satisfy

pre-specified linear inequalities and equalities on the relationships among the variables. By fully

integrating the editing and imputation steps, we encode a probability distribution on the error lo-

cations that is informed by the observed relationships among the variables in the data, and we fully

incorporate uncertainty in the process of selecting and replacing erroneous values. The MCMC

algorithm for estimating the model generates datasets without structural zeros as by-products.

These can be disseminated as public use files and analyzed using multiple imputation techniques

(Rubin, 1987).

The remainder of the article is organized as follows. In Section 2, we present the Bayesian
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hierarchical model for edit-imputation, which we call the EI-DPM model. We first describe the

model for measurement error, which comprises sub-models for the error locations and the reported

values. We then describe the Dirichlet process mixture model for the underlying true data. In

Section 3, we present a MCMC algorithm for sampling from the EI-DPM model that guarantees

all edit constraints are satisfied. In Section 4, we report results of simulation studies based on a

subset of data from the 2000 U.S. census. Here, we compare the accuracy of inferences from the

EI-DPM to those from a F-H edit-imputation approach. In Section 5, we conclude with a discussion

of future research directions.

2 The EI-DPM Model

Suppose we have a sample of n subjects measured on J categorical variables. We associate each

subject i ∈ {1, . . . , n} with a true response vector, xi = (xi1, . . . , xiJ), with categorical entries,

xij ∈ Cj = {1, . . . , Lj}. True responses, xi, correspond to the data we would observe if they were

perfectly recorded. Let X = (xi, . . . ,xn) be the vector of all true responses. We do not observe

X ; rather, we observe the reported data Y = (y1, ...,yn). Here, each yi ∈ C = C1 × ... × CJ is

a potentially contaminated version of its corresponding xi. We assume that observable data are

stochastically generated conditional on the true responses through a measurement process, with

density M(y|xi, θy) for y ∈ C. If this process is such that M(y|xi, θy) = δxi(y), we call it a

perfect measurement process. Whenever it is the case that yi 6= xi we say that the i-th individual’s

observed data contains errors.

True responses are subject to a set of edit rules that enumerate impossible responses. Formally,

edit rules are a subset S ( C for which we know a priori that Pr(xi ∈ S) = 0; that is, they are

a set of structural zeros as defined by Bishop et al. (1975). Unlike true responses, reported data

potentially can take any possible value in C, i.e., Pr(yi ∈ S) > 0. Therefore, whenever yi ∈ S we

know for sure that yi contains errors. We call errors that result in a direct violation of edit rules

detectable. Conversely, whenever xi 6= yi but yi /∈ S, we call the errors undetectable. We note that

the existence of errors within a record is detectable, not necessarily the location of the errors. For

example, when a reported record is a male with a hysterectomy we can be sure that there is an
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error, but we cannot know—at least not from the record only—whether the error is the reported

sex, the reported hysterectomy, or both.

We assume that the true response vectors are iid samples from a common data generating

process with density fx(x|θx, S) for x ∈ C. Here the dependence on S stresses the fact that the

support of the distribution must be truncated to the set C \ S to avoid inconsistent values. Under

this setup, the objective is to use the contaminated data, Y, to estimate the joint distribution of

the true responses.

2.1 Measurement model

When we consider X as given, the measurement model M(y|xi, θy) encodes assumptions about

how the observable responses are generated from the true responses. It is useful to specify the

measurement model in two parts. The first part, the error location model, specifies which among

the n × J entries in X are reported incorrectly. For i = 1, . . . , n, let Ei = (Ei1, ..., EiJ), where

Eij = 1 when there is an error in the (i, j)-th location, and Eij = 0 otherwise. By definition,

Eij = 1 if and only if xij 6= yij . Generically, we write the distribution of the error location model

for all n records as p(E | X , θy). The second part, the reporting model, specifies which values are

observed for fields in error. Generically, we write the distribution of this model as p(Y | X , E , θy).

Thus, we can write M(y|xi, θy) as p(Y | X , E , θy)p(E | X , θy).

The error localization and reporting models can be adapted to reflect a priori assumptions about

the measurement error process. For example, one can allow the likelihood of error for variable j to

depend on the level of the true response by using a regression of Eij on xij . More simply, one could

favor certain combinations of Ei over others. For example, one could assume Pr(Eij = 1 | xi, θy) =

εj , allowing differential probability for changing some variables over others. This is sensible when

some variables are more reliably reported than others. Alternatively, one might assume that errors

are generated completely at random, so that all Eij have independent Bernoulli distributions with

a common error rate ε. This location model defines a perfect measurement model when ε = 0.

For the reporting model, it is computationally convenient to assume that, conditional on the

existence of errors, substitutions are independent. Similar independence assumptions are made, for
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example, in record linkage contexts (e.g. Fellegi and Sunter, 1969; Steorts et al., 2014). Generally,

we write the model as

yij |xij = l, Eij = e ∼


δl if e = 0

Discrete({1, ..., Lj}, {qjl(1), qjl(2), ..., qjl(Lj)}) if e = 1.

(1)

Here qjl(l
∗) is the probability of reporting level l∗ ∈ {1, ..., Lj} for variable j when the actual value

is l ∈ {1, ..., Lj}. We consider
∑Lj

l∗=1 qjl(l
∗) = 1 and qjl(l) = 0. Interpreted as a generative process,

this model simply states that whenever the j-th variable is erroneous, the reported data will be

sampled from all possible values except for the correct one. Absent any information about the

propensities of reporting errors, one can assume a uniform substitution process, making qjl(l
∗) ∝ 1

for all l∗ 6= x and qjl(l) = 0. This leads to the probabilities

qjl(l
∗) =


qj if l∗ 6= l

0 otherwise

(2)

where qj = 1/(Lj − 1).

We complete the specification of the measurement error model with prior distributions for θy.

For example, for a Bernoulli error location model, one can use

ε ∼ Beta(aε, bε). (3)

This prior specification has the advantage of being conjugate to the error location model and of

having a flexible and natural interpretation. Interpreting the prior expected value aε/(aε + bε) as

the “prior error rate”, and aε + bε as the “prior sample number of responses” (see e.g. Gelman

et al., 2013, p35), we can encode beliefs about the quality of the observed data. With εj 6= ε for all

j, one instead could use (aεj , bεj) in (3), selecting values that reflect a priori beliefs about the error

rate of each variable.

A key feature of this formulation is that we do not assume that the error generation depends
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in any way on the edit rules S. In particular, we do not assume yi /∈ S implies that yi = xi. From

a generative perspective this feature seems a sensible modeling choice—the generation of errors

need not be contingent on our ability to detect them. However this is a departure from the F-H

approaches applied in most NSIs. F-H approaches are based on the principle of minimizing the

number of changes required for the observed data to satisfy all the edits. This implies that whenever

yi 6= xi but yi /∈ S, i.e., the record has errors but satisfies all edits, a F-H approach prescribes no

changes to that record. Thus, F-H essentially treats undetectable errors as nonexistent; in other

words, it assumes a measurement model that only can generate detectable errors.

Although perhaps unrealistic, measurement models that generate only detectable errors are

implicitly used by many NSIs. Typically these organizations are reluctant to change reported data

values as a matter of principle. To adhere to this logic, that is, fixing only records with detectable

errors, we can adjust the measurement model in the EI-DPM by setting Ei = (0, ..., 0) for all

records with yi /∈ S. This effectively forces the model to assume xi = yi for all records without

detectable errors.

Alternatively, we can enforce changing a small number of fields through the prior distribution

on the error rates. Specifying small probabilities of errors with high certainty—for example, using

small aε/(aε + bε) with large aε + bε in (3)—implies that errors are rare by default. This results

in posterior distributions where individual records are considered erroneous only when strongly

suggested by the data, which is most likely because of a direct violation of the edit rules. This

specification can be considered as a model-based analogue of the F-H principle.

2.2 True response model

The true responses generation model, fx(x|θx, S), in principle can be any multivariate discrete

distribution, as long as it is supported only in the set C \ S. In practice we desire fx(x|θx, S) to be

rich enough to capture the relevant multivariate structure in X . One such model is the truncated

Bayesian non-parametric latent class model (TNPLCM), introduced by Manrique-Vallier and Reiter

(2014a), which we now review.

Latent class models (LCM. Goodman, 1974; Lazarsfeld and Henry, 1968) are widely used for
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representing discrete multivariate distributions. Putting aside for the moment the complications

posed by the structural zeros, the LCM is the finite mixture of K products of multinomial distri-

butions,

p(x|λ,π) = fLCM (x|λ,π) =
K∑
k=1

πk

J∏
j=1

λjk[xj ], (4)

where π = (π1, ..., πK) are mixture component probabilities such that
∑K

k=1 πk = 1, and λ = (λjk[l])

are J ×K sets of multinomial probabilities with
∑Lj

l=1 λjk[l] = 1 for j = 1, ..., J and k = 1, ...,K.

For large enough K, this model can represent any probability distribution over C arbitrarily well

(Dunson and Xing, 2009).

The mixture in (4) can be represented as a two-step generative process for xi. Let each individual

belong to one latent class, zi ∈ (1, . . . ,K). For any i = 1, . . . , n, we can write (4) as

xij |zi
indep∼ Discrete ({1, ..., Lj}, (λ1zi [1], ..., λJzi [Lj ])) for j = 1, ..., J (5)

zi
iid∼Discrete ({1, ...,K}, (π1, ..., πK)) . (6)

This representation facilitates estimation via Gibbs sampling (Ishwaran and James, 2001; Si and

Reiter, 2013; White and Murphy, 2014).

Dunson and Xing (2009) suggest letting K = ∞ and using an infinite stick-breaking pro-

cess (Sethuraman, 1994) for the prior distribution on π. This prior distribution has full support

on the distribution of probabilities of x, and it does not restrict dependence structures a priori

(Dunson and Xing, 2009). For an almost-sure approximation (Ishwaran and Zarepour, 2002) that

is computationally more convenient, one can set K to a large but finite integer (Ishwaran and

James, 2001; Si and Reiter, 2013). In this representation, we let πk = Vk
∏k−1
h=1(1 − Vh), where

VK = 1 and V1, . . . , VK−1
iid∼ Beta(1, α). The prior specification can be completed with diffuse pri-

ors α ∼ Gamma(0.25, 0.25) and λjk[·]
iid∼ DirichletLj (1, ..., 1) for j = 1, ..., J and k = 1, ...,K. See

Dunson and Xing (2009) and Si and Reiter (2013) for additional discussion of the prior distributions.

The LCM does not automatically assign zero probability to combinations x ∈ S, that is, po-

tential outcomes known to have probability zero. To enforce Pr(x ∈ S) = 0 when estimating cell
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probabilities, Manrique-Vallier and Reiter (2014a) introduced the truncated LCM,

p(x|λ,π, S) = fTLCM (x|λ,π) ∝ I{x /∈ S}
K∑
k=1

πk

J∏
j=1

λjk[xj ]. (7)

Manrique-Vallier and Reiter (2014a) use the K-dimensional stick-breaking process as the prior

distribution of π. To estimate model parameters, Manrique-Vallier and Reiter (2014a) rely on a

sample augmentation strategy. They consider X = {xi /∈ S} to be a subset of a hypothetical

sample X ∗ of N ≥ n records, directly generated from (5)-(6) without caring about the truncation

of the support. Let X 0 and Z0 be the responses and latent class labels corresponding to those

samples in X ∗ that did fall into the set S. Manrique-Vallier and Reiter (2014a) show that, by using

the improper prior distribution p(N) ∝ 1/N (Meng and Zaslavsky, 2002), the marginal posterior

distribution of parameters (π,λ, α) after integrating out (N,X 0,Z,Z0) matches that based on the

truncated representation in (7).
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2.3 Edit-imputation model used in illustrations

In the empirical illustration, we use a measurement model with common ε and a uniform substitu-

tion process. Putting this together with a TNPLCM as the true response model, we have

yij |xij , Eij ∼


δxij if Eij = 0

Uniform({1, ..., Lj} \ {xij}) if Eij = 1

(8)

Eij |ε
iid∼Bernoulli(ε) (9)

p(xi|λ,π, S) ∝I{xi /∈ S}
K∑
k=1

πk

J∏
j=1

λjk[xij ] (10)

πk =Vk
∏
h<k

(1− Vh) for k = 1, ...,K (11)

Vk|α
iid∼Beta(1, α) for k < K, and VK = 1 (12)

λjk[·]
iid∼DirichletLj (1, ..., 1) (13)

α ∼Gamma(0.25, 0.25) (14)

ε ∼Beta(aε, bε). (15)

Here i ranges from 1 to n, and j from 1 to J .

3 MCMC Estimation

To estimate the model in (8)–(15), we use the Gibbs sampler outlined in Section 3.2. This sampler

utilizes the fact that editing rules, i.e., representations of structural zeros, often can be expressed

as the union of non-overlapping table slices. A table slice is a subset of C defined by fixing a subset

of the coordinates of the potential responses—for example, the set {x ∈ C : x1 = 1, x3 = 2}. Edit

rules frequently are formulated as a collection of combinations of levels of a few variables (often

just two at a time) that are deemed impossible. For example, a rule forbidding records where

“sex=male” and “hysterectomy=yes” defines a table slice. More complex rules can be decomposed

into simple slice definitions. For example, a rule specifying that people younger than 14 years old
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cannot be married can be translated as the union of all the table slices formed by keeping the

variable for marital status fixed at “married,” and making the age variable take all the discrete

levels corresponding to ages less than 14. Expressing S as table slices can facilitate significant

computational gains in the Gibbs sampler for the truncated LCM (Manrique-Vallier and Reiter,

2014b,a). Hence, we begin by defining a notation for table slices corresponding to edit rules.

3.1 Representing Edit Rules as Table Slices

Following the notation in Manrique-Vallier and Reiter (2014a), we define slice definitions as vectors

µ = (µ1, . . . , µj) where, for j = 1, . . . , J , µj = xj whenever xj is fixed at some level and µj = ∗

otherwise, where ∗ is special notation for a placeholder. For example, assuming J = 5, the slice

definition for the example set {x ∈ C : x1 = 1, x3 = 2} corresponds to µ = (1, ∗, 2, ∗, ∗). Let

C∗ =
∏J
j=1{1, 2, ..., Lj , ∗} be the space of all possible slice definitions µ.

We use slice definitions to denote table slices through the mapping,

µ = {(x1, ..., xJ) ∈ C : xj = µj for all µj 6= ∗} , (16)

for any µ = (µ1, ..., µj) ∈ C∗. We call µ the table slice defined by µ. Note that while the slice

definition µ is an element of the set C∗, µ is a subset of C.

The slice definition notation is useful because it allows us to define formal operations in the

space C∗ that map directly into set operations in C. In particular, we define the intersection of slice

definitions µA and µB as the slice definition vector int(µA,µB) = (γ1, ..., γJ) ∈ C∗ such that, for

any j = 1, ..., J ,

γj =


µAj if (µAj = µBj ) or (µAj 6= ∗ and µBj = ∗)

µBj if µAj = ∗ and µB 6= ∗.
(17)

From this definition it is easy to verify that

int(µA,µB) = µA ∩ µB. (18)

Definition (17) does not consider cases where µAj 6= ∗, µBj 6= ∗ and µAj 6= µBj for one or more j.
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These cases correspond to table slices with an empty intersection. Whenever this is the case we

leave int(µA,µB) undefined and let int(µA,µB) = ∅.

In what follows we assume that the collection of edit rules is characterized by a collection of C

disjoint slice definitions, so that S =
⋃C
c=1µc. This typically requires a pre-processing step of the

original collection of edits. Manrique-Vallier and Reiter (2014a) propose a simple orthogonalization

algorithm based on a repeated application of the int(·, ·) operator that could be used for this

purpose. We describe the algorithm in the online supplement.

3.2 Gibbs sampler

We use a Gibbs sampler to estimate the posterior distribution of (X , E ,Z,Z0,X 0,π,λ, α, ε,N)

for the model in Section 2.3. Given (Z,Z0,X 0,π,λ, α,N), we update (x,E, ε) using the steps

in Section 3.2.1. Given a set of true responses X , i.e., after imputing “corrected” values for fields

deemed to be erroneous, we update (Z,Z0,X 0,π,λ, α,N) using the sampling strategy in Manrique-

Vallier and Reiter (2014a). These steps are shown in Section 3.2.2.

After running the Gibbs sampler to convergence, analysts can obtain posterior inferences from

relevant parameters. Alternatively, analysts can treat the samples of X generated by this algorithm

as multiple instances of “corrected” datasets for use in multiple imputation inference (Rubin, 1987).

To do so, analysts select a modest number, say M , of datasets sufficiently spaced so that they are

approximately independent.

3.2.1 Sampling (X ,E, ε)

For the model with different error rates for each variable, the full conditional distribution of each

εj is

εj |... ∼ Beta(aεj + sj , bεj +N − sj) for j = 1, ..., J (19)
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where sj =
∑N

i=1 I(Eij = 1) and (aεj , bεj) are specific hyperparameters for variable j. For the

model with εj = ε and (aεj , bεj) = (aε, bε) for all j, this expression simplifies to

ε|... ∼ Beta(aε + s, bε +N × J − s) (20)

where s =
∑

j sj .

Sampling from (Ei,xi) is more involved. Since the vector Ei is completely determined by xi

and yi, we cannot form Gibbs steps for sampling Ei independently of xi using the full condi-

tionals p(xi|...) and p(Ei|...). Instead, we sample directly from p(xi,Ei|...) using the conditional

factorization

p(xi,Ei|...) = p(xi|...,−{Ei})× p(Ei|...),

where p(xi|...,−{Ei}) denotes the pmf of xi, conditional on all the parameters and data except for

Ei. Allowing different εj to present these pmfs in most general form, we have

p(xi|...,−{Ei}) ∝ I(xi /∈ S)
J∏
j=1

λjk[xij ](εjqj)
I(xij 6=yij)(1− εj)I(xij=yij) (21)

p(Ei|...) =

J∏
j=1

I(xij 6= yij). (22)

Sampling from (21) is difficult because of the factor I(xi /∈ S), which induces dependency among

the coordinates of xi. A simple solution is to use a rejection sampling scheme, sampling repeatedly

from (21) without considering the truncation until getting a value xi /∈ S. This method works

well when the rejection probability is small. When this is not the case (e.g., under severe prior

misspecification for ε; see discussion at the end), we can use a conditional sampling strategy that

exploits the special structure of S, which is a disjoint union of table slices. Noting that

p(xi1, ..., xiJ |...,−{Ei}) =

J∏
m=1

p(xim|...,−{Ei, xi(m+1), xi(m+2), ..., xiJ}),

we sample the coordinates of xi one by one using their partial conditional distributions. For this

we rely on the following result, proved in Appendix A.
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Theorem 1. Let the region of structural zeros, S, be defined by a disjoint collection of table slices,

i.e.

S =
C⋃
c=1

µc,

with µc ∩ µc′ = ∅ for c 6= c′. Then, the partial conditional distribution,

p(xim|...,−{Ei, xi(m+1), xi(m+2), ..., xiJ})

∝ am(xim)

 J∏
j=m+1

bj −
C∑
c=1

 J∏
j=m+1

aj(ρ
(c,m)
j )I(ρ

(c,m)
j 6=∗)b

I(ρ
(c,m)
j =∗)

j

 , (23)

where aj(x) = (εjqj)
I(x 6=yij)(1− εj)I(x=yij)λjzi(x) for x ∈ {1, ..., Lj}, bj =

∑Lj
x=1 aj(x), and

(ρ
(c,m)
1 , ..., ρ

(c,m)
J ) = int

(xi1, ..., xim, ∗, ..., ∗︸ ︷︷ ︸
(J−m) times

),µc

 .
Applying this theorem, we sample from (xi,Ei) as follows. For m = 1, . . . , J . sample

xim ∼ Discrete1:Lj (p1, ..., pLj )

where ph = Pr(xim = h| . . . ,−{Ei, xi(m+1), xi(m+2), . . . , xij}). We compute p1, . . . , pLj using re-

sult (23) from Theorem 1. We make eij = I(xij 6= yij) for j = 1...J .

This conditional sampling strategy is guaranteed to work; however, computing probabilities

using the formula in (23) can be computationally expensive. As a compromise, we suggest and use

a hybrid strategy. We start with the rejection sampling scheme, trying to get a proposal accepted

until a maximum number of trials (we used a cutoff of 500 attempts in our calculations in the next

section). After that threshold is reached, we default to the conditional sampling method. In our

experience, this method is reasonably fast and robust, taking advantage of the low computational

cost of sampling directly from the LCM when possible and turning to a more sophisticated sampler

when not.

14



3.2.2 Sampling (Z,Z0,X 0,π,λ, α,N)

We sample (Z,Z0,X 0,π,λ, α,N) using an adapted version of the seven steps outlined in Manrique-

Vallier and Reiter (2014a).

1. For i = 1, . . . , n, sample zi ∼ Discrete1:K(p1, . . . , pk), with pk ∝ πk
∏J
j=1 λjk[xij ].

2. For j = 1, . . . , J and k = 1, . . . ,K, sample λjk[·] ∼ Dirichlet
(
ξjk1, . . . , ξjkLj

)
, with ξjkl =

1 +
∑n

i=1 1{xij = l, zi = k}+
∑n0

i=1 1{x0
ij = l, z0

i = k}.

3. For k = 1, ...,K − 1 sample VK ∼ Beta(1 + νk, α +
∑K

h=k+1 νh), for νk =
∑n

i=1 1{zi =

k}+
∑n0

i=1 1{z0
i = k}. Let VK = 1 and make πk = Vk

∏
h<k(1− Vk) for all k = 1, ...,K.

4. For c = 1, . . . , C, compute ωc = Pr(x ∈ µc|λ, π) =
∑K

k=1 πk
∏
µcj 6=∗ λjk[µcj ].

5. Sample (n1, . . . , nC) ∼ NM(n, ω1, . . . , ωC), and let n0 =
∑C

c=1 nc.

6. Let κ← 1. Repeat the following for each c = 1, . . . , C.

(a) Compute the normalized vector (p1, . . . , pK), where pk ∝ πk
∏

j:µcj 6=∗
λjk[µcj ].

(b) Repeat the following three steps nc times:

i. Sample z0
κ ∼ Discrete1:K(p1, . . . , pk),

ii. For j = 1, . . . , J sample

x0
κj ∼


Discrete1:Lj (λjz0κ [1], . . . , λjz0κ [Lj ]) if µcj = ∗

δµcj if µcj 6= ∗

where δµcj is a point mass distribution at µcj ,

iii. Let κ← κ+ 1.

7. Sample α ∼ Gamma (a− 1 +K, b− log πK).
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4 Empirical Study

We now empirically illustrate the performance of the EI-DPM for edit-imputation and compare it

to a F-H approach to edit-imputation. To do so, we use a subset of the 5% public use microdata file

for the 2000 U. S. Decennial Census for the state of New York (PUMS; Ruggles et al., 2010). These

data also were used by Manrique-Vallier and Reiter (2014a,b). The data comprise H = 953, 076

subjects and J = 10 categorical variables: ownership of dwelling (3 levels), mortgage status (4

levels), age (9 levels), sex (2 levels), marital status (6 levels), single race identification (5 levels),

educational attainment (11 levels), employment status (4 levels), work disability status (3 levels),

and veteran status (3 levels). This results in a contingency table with 2,566,080 cells. The data

documentation indicates 60 pair-wise combinations of variable levels that are deemed impossible;

we take these to form a set of edit rules. For example, for any individual i, the true response to

the variable OWNERSHIP (ownership of dwelling) cannot take the value “Rented” at the same

time as the variable MORTGAGE (mortgage status) takes the value “No, owned free and clear.”

After translating these rules into table slice definitions and applying the algorithm in Manrique-

Vallier and Reiter (2014a), we end up with 567 non-overlapping slice definitions. This represents

a substantially simplified characterization of the edit rules, as 2,317,030 of the cells correspond to

impossible responses.

We consider the H records as a population, from which we take 500 independent, random

samples of n = 1000 individuals. Since public use files released by the U. S. Bureau of the Census

do not contain errors, we contaminate each of the 500 samples using the independent errors and

uniform substitution model, with error rate ε = 0.4. Thus, in each of the 10× 1000 entries in each

test dataset, approximately 4, 000 have been replaced by a random value different from the actual

one. With this error rate, we expect 994.0 records per sample—essentially all of them—to have at

least one error. However, not all these errors are detectable. In fact, for a given contaminated sub-

sample only approximately 78% of the records with errors actually contain one or more violations

of the edit rules, meaning that about 22% of the records contain undetectable errors. We note

that 40% is a very large fraction of errors; our objective is to put the EI-DPM method through a

challenging stress test.
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For each sample, we use the EI-DPM model to generate 50 multiply imputed datasets. We use

ε ∼ Beta(1, 1), expressing complete ignorance about the nature of the error rate. We discuss the

effects of this and other choices of prior distribution for ε later in this section. We use multiple

imputation combining rules (Rubin, 1987) to estimate all 1, 824 three-way marginal proportions

that are estimable from the 500 samples. We also create 50 multiply imputed datasets using the

F-H paradigm. Specifically, in each of the 500 samples, we independently employ the R package

“EditRules” (De Jonge and Van der Loo, 2012) to select a single set of error-localizations that

minimizes the number of changes needed to force each record to satisfy all edits. Since the error-

localization solution need not be unique, in case of ties we use the default behavior of the package,

which is choosing one solution randomly. Once we select the location of the errors, we blank and

multiply-impute the selected values. To make comparisons between F-H and EI-DPM as fair as

possible, we generate imputations using the model in Manrique-Vallier and Reiter (2014b), which

is similar to the sampler in Section 3.2.

Figure 1 illustrates the effects of the contamination procedure on the quality of inferences, before

any edit-imputation. Here we contrast the population values and empirical frequencies of each of the

1, 824 three-way marginal probabilities over the 500 replications, using the samples before and after

contamination. Unsurprisingly, the uncontaminated frequencies lie almost perfectly on the main

diagonal, and the frequencies from the contaminated data are extremely biased, almost consistently

underestimating the population values.

Figure 2 displays the 1,824 3-way margins estimated from the 50 multiply edited-imputed

datasets generated by EI-DPM and by the application of the F-H method. Comparing to the

estimates obtained from the raw contaminated data in Figure 1, the EI-DPM edit-imputation

procedure (Figure 2, left panel) produces remarkably accurate estimates of the target quantities.

The F-H edit-imputation approach (Figure 2, right panel) is not as accurate. Even after the

error-localization and multiple imputation steps, estimates obtained through the F-H approach

exhibit notable bias—in fact, they are similar to those obtained directly from the contaminated

data (Figure 1). Figure 3 presents the mean squared error (MSE) for these two groups of estimates.

The MSE of F-H estimates tend to be around 20 times larger than those from EI-DPM.

17



0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Population

E
st

im
at

es

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●●●
●

●
●●●

●●

●

●

●

●

●

●

●

●

●
●●

●●●
●●

●

●

●●●●●●●

●

●

●

●
●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●
●●

●

●

●

●

●
●

●●●
●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●●●●
●

●

●●
●

●
●●

●

●

●●

●●

●

●

●

●

●

●●

●●●●●●●
●

●●
●

●●
●●●
●●

●

●

●

●●
●

●●●●●
●

●●●

●

●

●●

●●

●

●

●

●
●●●●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●
●●●●

●

●

●

●●

●●

●

●

●

●●
●●

●

●

●

●

●

●●●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●●●
●●●●●
●●●

●●●●

●

●

●

●

●
●

●
●●●

●
●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●●
●

●

●●●●

●●
●

●●
●

●

●

●●●
●●●

●●
●

●

●●●

●

●

●

●

●

●●

●●

●

●

●
●

●
●●

●

●

●

●

●
●●●●●

●●

●
●●●

●

●

●

●

●●
●●●●●

●
●

●
●●

●

●

●
●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●●●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●
●●

●

●

●
●

●●

●

●

●●
●

●●
●

●

●
●

●
●

●

●

●
●

●●●●

●

●

●●●●

●●
●

●●
●

●●●●●●

●

●

●

●●

●

●

●
●

●●●
●●

●
●●

●
●●●●●●

●

●

●
●●

●

●

●
●

●●

●

●

●

●

●●●

●

●

●●●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●●●

●
●

●

●
●

●

●

●

●●
●●

●

●●●
●

●
●

●

●

●

●●
●●

●

●●●
●●

●

●

●

●
●

●
●●●●

●
●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●●●●
●

●●●
●

●
●●

●
●

●
●

●

●

●●●
●●
●●●●●●

●
●●●

●

●

●

●
●

●
●●

●

●

●●

●

●●
●

●●
●●●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●●●●

●●

●

●●

●

●●●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●●●●●●●●●●●●

●

●

●●

●
●

●●●●●●●
●●●

●
●●
●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●●●
●

●
●

●

●

●●

●

●

●
●

●
●●

●
●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●●
●●●●

●

●

●

●●

●

●
●●

●●●
●

●●
●●

●

●●

●

●
●●●●
●●●

●
●

●

●

●

●

●
●

●

●●

●

●

●●
●●

●●
●●

●

●
●

●

●

●

●●

●

●●
●●●●

●

●

●

●●●

●

●

●

●

●

●

●●
●

●●●●

●

●

●

●●●
●

●
●

●●
●

●

●●●●

●
●

●

●
●

●
●

●

●
●●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●
●

●

●

●

●
●

●

●

●

●

●●●●
●●●●●

●

●
●

●

●

●

●●
●

●●
●

●
●

●●

●
●●

●

●●●
●

●
●

●●●●●

●

●

●

●
●

●

●
●●

●

●

●●

●
●

●

●●●
●

●
●

●
●●●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●●

●●
●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●
●●●

●
●

●
●

●
●

●●●●●
●

●●
●

●

●●
●

●

●

●

●
●

●

●●

●

●
●●

●

●●●●●●●
●●●●

●●●
●

●
●

●●
●

●●
●

●●●●●●
●●●●●●●●●

●●

●

●

●

●

●

●

●

●

●●●
●●

●●
●

●●

●●

●

●

●

●

●
●

●

●
●

●

●●●●●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●●●

●

●
●

●
●

●

●●●●●●

●

●

●
●

●

●

●●

●●●
●

●●●●●●●
●

●●●●

●

●

●

●

●

●●

●●
●

●
●

●
●

●

●
●

●●●

●

●

●

●

●

●
●●●
●

●
●

●
●●●●●●

●

●●

●

●

●

●●●●
●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●●

●

●●●
●●●●●

●
●●
●●

●

●

●

●

●

●

●

●

●●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●●●●●
●●●

●

●●

●

●

●

●

●

●

●

●●
●●
●

●●●

●
●

●
●

●

●
●

●

●

●●
●

●●●●●
●●

●●●●●
●

●●

●
●

●

●
●

●
●

●
●●●
●●●

●●
●●
●●

●●

●
●

●

●●

●
●

●
●

●
●●●

●●●
●●

●●
●●●

●

●

●

●

●

●

●●
●

●●

●●●●●
●

●

●●

●

●

●

●

●●
●

●●

●●●●

●

●●

●

●

●

●

●

●●
●●●●
●

●

●●

●
●

●
●

●
●

●●

●●

●●●●

●●●●●●

●●

●●

●●
●

●●
●●●●●●

●●
●●

●●

●●

●

●

●●

●●
●

●

●

●●●

●●

●●

●●
●

●●

●●

●●●●●

●●

●

●

●●●●
●

●

●●

●
●●●●●●

●●●●●●

●
●

●●
●●

●●
●●

●●

●●

●●

●

●

●●
●●●●

●

●

●●

●●

●●

●

●

●
●

●●

●●

●

●●

●●

●

●

●
●

●●

●

●●●●
●●

●
●

●●
●●

●●
●●

●●●●

●

●

●●●

●●●●
●●

●●●●●●●

●

●

●●

●●
●●

●●
●●

●●●●
●●

●●●●●●

●

●

●
●

●
●

●
●

●
●●

●

●●

●
●

●●

●

●

●●●
●

●●

●
●

●●

●

●

●●

●●

●

●

●
●●

●

●

●

●

●●

●

●●●●

●

●●

●

●●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●●

●

●
●

●●

●

●
●

●

●

●

●

●●

●●

●

●
●

●
●

●

●
●

●

●

●

●
●

●●

●
●

●

●●●

●

●●
●●●

●
●

●

●●●

●

●●

●

●
●●

●

●

●
●

●●
●

●
●

●

●●●●

●

●
●●

●

●●●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●●●

●

●●
●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●●●●

●

●
●

●●
●●

●
●

●

●

●

●
●

●
●

●
●

●●●

●

●
●

●
●●●

●
●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

● Uncontaminated
Noisy

Figure 1: Average over 500 replications of estimates of 3-way margin proportions obtained from
500 contaminated samples (ε = 0.4) without edit imputation, versus their actual population values.
For clarity we show estimates for quantities whose populational value is larger than 0.01. Estimates
from the contaminated samples are extremely biased.
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Figure 2: Average over 500 replications of the multiple imputation estimates of 3-way margin
proportions versus their actual population values, for faulty data with ε = 0.4. EI-DPM in left
panel. F-H in right panel.
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Figure 3: Empirical (over 500 replications) mean squared error of estimates of 1,824 3-way marginal
proportions using EI-DPM edit imputation vs. using F-H

Figure 4 displays the empirical coverage rates of 95% confidence intervals for the 1,824 3-way

margin test population parameters, using EI-DPM as well as the F-H approach. These intervals are

based on the methods of Rubin (1987). We also display the empirical coverage of 95% confidence

intervals obtained from multiply imputing the faulty values using the true error locations as gen-

erated during the data contamination procedure. We use these values—in principle unattainable

from the edited-imputed datasets—as a gold-standard reference to calibrate the coverage rates.

Most of the intervals from EI-DPM have at least 80% coverage rates. Typically, the undercoverage

results from small absolute biases with small standard errors. In contrast, only 21% of the intervals

from the F-H procedure have at least 80% coverage rates, and 30% of them are exactly zero.

We also run the EI-DPM using the prior distribution, ε ∼ Beta(1, 105). This expresses a

strong (unwarranted in this illustration) belief in the quality of the data, giving essentially a weight

equivalent to ten times the data to the prior specification in the posterior inference on ε. As a

result, we expect to reduce the probability of detecting errors that are not evident, like those that

do not result in violation of edit rules. Using one run with ε = 0.4 as an example, we found that the

mean posterior probability of detecting at least one error in records with inconsistencies is exactly

100%, whereas in faulty records without edit violations it drops down to 5.6%. As expected, the
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Figure 4: Empirical coverage over 500 replications of multiple-imputation 95% intervals for 1,824
3-way margin proportions obtained from contaminated samples with ε = 0.4. Left panel: EI-DPM
edited-imputed vs “Oracle” imputed samples. Right panel: F-H vs “Oracle” imputed. Discontin-
uous lines mark nominal 95% coverage levels. Unif(-0.005, 0.005) noise added for clarity.

failure to catch errors induces large biases in the estimates (left panel Figure 5). We note, however,

that these biases are noticeably lower than those obtained with the F-H approach (right panel

Figure 5). Stronger priors (e.g. aε = 1 and bε = 106) result in behaviors even closer to the F-H

results, but still with better predictive performance; see the online supplement.

We also examine the method of setting Eij = 0 for all j for records i without detectable errors.

This prevents the edit-imputation engine from editing records without detectable errors, akin to

the F-H principle. Figure 6 displays the result of a repeated sampling experiment in which we

randomly contaminate 500 subsamples with rate ε = 0.4, but where we leave records that would

result in undetectable errors untouched; that is, we reset yi = xi for these records. The EI-DPM

method produces accurate estimates of the target quantities, whereas the F-H method produces

highly biased results.

Finally, as a check on whether similar patterns hold at lower rates of error, we repeat the

simulation using an error rate of ε = 10% in place of ε = 40%. As seen in Figure 7, edit-imputation

by the EI-DPM offers more accurate estimates than edit-imputation by the F-H method, although

20



0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Population

E
I−

D
P

M
 E

st
im

at
es

●
●●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●● ●●●●●

●
●

●●●●●●●

●●

●

●

●
●

●
●●

●
●

●●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●
●

●
●

●
●

●

●

●

●
●

●
●

●●
●●

●

●

●

●
●

●
●

● ●
●

●

●

●

●
●●

●
●●●●

●●● ●●●

●

●
●
●

●
●

●

●

●

●
●

●

●

●●●●●●●●
●● ●

●●●●●
●●

●

●
●

●
●

●●●
●●●

●●
●
●

●

●
●
●

●
●

●

●

●

●●●
●●

●
●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●
●
●●●●●

●
●●
●

●●
●

●

●

●

●

●
●

● ●●●●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ●
●
●
●●

●●
●

●●●

●

●●
●●

●
●●

●
●● ●

●●●
●

●

●

●

●●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●
●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●●
●

●
●

●●●●

●

●
●● ●●

●

●

●

●

●

●

●
●

● ●

●

●
●●●●

●

●

●

●

●●

●
●

● ●

●

●

●

● ●●

●

●

●
●

●

●
● ●
●

●

●

● ●●

●

●

● ●●
●

●●●

●

●
●●●

●

●

●

●

●●●●

●

●
●●●● ●●

●
●●●

●●●●
●●

●

●
●

●●

●

●

●

●

●
●

●
●

●
●

●●●●●●●
●●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●
●
●

●

●
●

●

●

●

●

●

●●●
●

●
●

●

●

●
●

●●
●●●●

●
●

●
●

●

●
●●

●●●●●●●●●

●

● ●
●

●
●●●●

●
● ●

●
●

●

●

●

●
●●

●

●
●
●

●

●

● ●
●

●

●
●●

●

●
●●

●●
●●●●●●●●

●●
●●

●
●●

●
●●●●●●●● ●●
●●

●

●

●

●●
●●
●

●

●

●
●

●
●●●
●●●●●●●

●

●

●

●●
●

●

●
●

●

●

●

●●

●

● ●
●●
●●●●

●

●

●●
●

●

●

●
●

●

●

●
●

●
●●

●●
●
●

●●

●

●●

●

●
●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●●●
●●●●●●●
●
●
●
●

●● ●
●

●
●

●
●
●
●●●●
●●
●●●●

●
●

●●●

●

●

●
●

●

●
●

●
●

●

●
●

●
●●●

●

●

●
●

●

●

●
●

●

●●

●
●

●
●

●

●

●
●

●

●

●●
● ●

●

●

●● ●●●●

●

●

●

●●

●

●●
● ●

●●●●
●●
● ●

●●

●
●●●
●

●
●

●●
●● ●

●

●

●●
●

●

●
●

●

●
●● ●●

●●
●
●

●

●
●

●

●

●
●●

●

●
●●●●●

●

●

●

●●
●

●

●

●●
●

●

●
●●●●
●●

●

●

●

●
●
●
●●● ●
●

● ●
●●●●

●●
●

●
●

●
●

●●
●●●

●
●●

●
●

●
●

●●

●
●

●

●
●●

●

●

●●

●
●

●
●

●●

●

●

●

●
●●●

●
●
●

●

●

●
●

●
●

●

●

●

●

●●●●●●
●●●●●●

●
●

●

●●●
●●

●
●

●
●

●

●
●●

● ●●●●●●
●●●●●

●
●

●

●

●
●

●
●●

●
●

●●
●●● ●●●●●●●●●●●

●

●

●

●

●
●

●
●

●
●

●
●●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●

● ●

●
●

●●●●●
●●●●

●

●
●●

●

●
●

●

●
●●●

●

●
●
●

●

●
●
●●●●● ●●●●●●●●

●●
●●

● ●●●●●●●●●
●●●●●●●
●●

●●

●
●

●

●

●
●

●

●

●●
● ●●●●●

●●

●●
●

●

●
●

●●
●

●
●

●

●

●
●●●●

●●
●

●

●

●

●
●

●

●
●●

●
●● ●

●
●

●●●● ●
●●●

●

●

●●●
●●●

●
●

●●
●

●
●●●●● ●●●●●●

●●●●●
●●

●

●
●

●

●
●

●
●●●

●
● ●
●

●
●●●●●

●

●
●

●
●

●
●●●●

●
●

●
●●●
●
●●

●

●
● ●

●

●

●●●
●

●

●
●●

●●
●

● ●
●

●
●

●● ●
●

●●
●

●●●●●●
●●●●●
●
●

●

● ●
●

●
●

●

●

●●●●
●● ●●

●

●

● ●
●

●

●

●

●
●

●●●
●●
●●●
●
●●

●

●
●

●
●

●

●

●

●
●

●●●
●

●●
●●

●
●

●●
●

●
●

●
●

●●●●●
●●●●●
●●

●●●●
●●

●●
●●

● ●●
●

●●●●●
●●●●●
●●●●

●●
●

●●
●

●
●

●
●●●●

●●
●●●
●●

●●●

●

● ●
●

●

●

●●
●

●●

●
●

●●●●

●

●●
●

●

●

●

●●
●

●●

●●●●

●

●●

●

●

●

●

●

●
●

●

●●
● ●
●

●

●

●
●●●

●
●

●●
●●

●●●
● ●●●●●●●
●

●●

●●●
●●

●●●●●●
●
●●●
●●

●●

●

●

●●

●●● ●

●
●●
●

●●

●
●

●
●●●●

●
●

●
●●
●●

●●

●
●

●●
●
● ●●

●●

●
●
●
●
●●
●

●●●●●●

● ●

●
● ●●●
●

●●●●
●

●
●●

●

●

●●
●●
●
●

●
●

●●
●

●
●●

● ●

●
●

●
●

●
●

●

●●

●●

● ●

● ●

●●

●

●●●●●●

●●

●●●
●

●●●●
●
●

●●

●
●

●●● ●●●●●●●●●●●●
●

● ●

●●
●●

●●●
●●●●●●●●●●

●
●●●
●

●
●

● ●●
●

●●●●
●

●

●●

●
●

●●

●

●

●
●●●

●●

●

●

●●

●

●

●
●

●●

●

●

●
●●

● ●
●

●

●●
●

●●●●

●

●●
●

●● ●●●
●

●
● ●

●

●

●
●

●

●
●

●●●

●

●
●

●

●

●

●
●

●

●●
●●

●

●●
●● ●

●
●

●

●
●

●

●●
●●

●

●
●

●
●

● ●●
●

●

● ●
●●●

●
●

●
●●●

●

●●●●●

●●
●

●●●

●

●
●

●
●●●

●

●
●

●
●
●

●

●●
●

●●●●

●

●
●
●

●
●●●

●

●
●

●
●●

●
●

●
●

●

●

●

●
●

●

●●●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●
●

●

● ●●
●●

●
●●●

●

●●●●● ●
●

●

●
●

●●●●

●

●
●

●
●

●●
●

●
●

●

●
●

●●
●

●●●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●●
●

●

●
●

●●

●●●●●

●

●
●●●

●●
●●

●
●

●

●
●

●●

●
●

●●●

●

●
●

●●●●

●●
●●●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●●●
●

0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Population

F
−

H
 E

st
im

at
es

●
●●

●

●

● ●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●
● ●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●●●●

●
●

●
●
●●●●

●

●
●

●

●
●

●
●

●
●

●
●

●●

●
●

●

●

●

●

●

●●

●

●
●●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●
●

●
●

●
●

●

●

●

● ●●

●
●
●

●
●

●

●

●

● ●
●

●

● ●
●

●

●

●

●
●

●
●
●
●

●●

●
●● ●●●

●
●●

●

●
●

●

●

●

● ●
●

●

●●●●●●●● ●● ●●●●
●
●

●●
●

●

●

●
●

●●●●●●●●●●

●
●●

●

●
●

●

●
●

●●●●●
●
●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●●
●●●

●
●

●

●
●

●
●

●

●

●

●
●

●
●●

●

●

●

●●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●
●
●●●●●

●
●●
●

●●
●

●

●

●

●

●
●● ●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●
● ●●

●
●
● ●●

●
●
●●

●

●●
●●

●
●●●●

● ●
●●●

●

●

●

●

●●

●

●
●

●

●
●

●●

●●

●

●

●

●

●
●

●
●●●

●

●
●

●
●●

●

●

●

●

●●

●

●●●●

●

●
●

●●
●

●
●●●●●

●

●
●● ●●●
●

●

●

●

●

●

●
● ●

●

●
●●

●●

●
●

●

●

●●

●

●●
●

●

●

●

●
●●

●

●

●●

●

●
● ●

●

●

●

●
●●

●

●

● ●● ●●●●

●

●●●●
●

●
●

●
●●●●

●
●

●●●● ●● ●
●●●

●●●●●●

●

●●
●●

●

●
●

●

●
●

● ●● ●
●
●

●
●●●●●●

●

●
●

●●
●

●
●

●

●
●

●
●

●

●

●
●●

●

●

●
●
●
●

●

●

●

●

●
●●

●

●
●
●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●●

●

●
●

●●●●
●

●
●

●

●

●●
●
●●●

●
●●●
●

●

●
●

●

●
●

●●●●
●● ●

●
●

●

●

●

●●
●

●

●
●
●

●

●

●
●

●
●

●
●

● ●
●●
●

●●●●●●●●●●
●●●●

●●●
●●●●●●●●● ●●●●

●

●
●●●

●●
●

●

●

●
●

●●●
●

●●
●
●

●●●
●

●

●
●

●
●

●

●
●

●

●

●

●
●

●
● ●

●●
●
●●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●●
●●
●●

●

●

●

●
●

●

●
●
●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●
●●●
●●●●
●●
●
●

●
● ●

●

●
●

●
●
●
●●●
●●●

●●●●●
●

●
●●

●

●

●●

●

●●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●
● ●●●

●

●

●

●
●
●

●
●●●

●
●●●●●
●●

●
●
●

●
●●●
●

●
●●● ●● ●

●

●
●

●

●

●

●●

●

●
●● ●●

●●
●
●

●

●
●

●

●

●

●

●

●

●
●●●●
●

●

●

●

●●

●
●

●

●

●

●

●

●●●●●
●●

●

●

●

●●●●●● ●
●

● ●
●●●
●

●
●

●

●
●

●
● ●●●

●
●

●
●●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●●
●

●

●
●

●●

●

●

●

●
●●●

●

●
●●

●

●
●●

●

●

●

●

●

●●●

●
●●
●
●●●●●

●
●

●
●●●●
● ●● ●●●

●
●●● ●●●●●●●●●●●

●
●

●
●

●
●●●
●

●
●●●

●●
● ●

●
●

●●●●●●●●

●

●
●

●

● ●●●
●

●
●●

●
●

●●

●

●
●

●

●

●

●

●

●
●●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●●●

●
●

●
●

●●
●●●●●

●●●●
●●

●●

●
●

●

●
●

●
●● ●

●●

●
●

●●●
●●●● ●●●●●●●● ●●●●● ●●●
●●●●●●●●●●●●●●●

●
●

●
●

●

●
● ●

●

●
●●
● ●●●●●

●● ●●●
●

●
●

●● ●

●
●

●

●
●
●
●●●

●●
●

●

●

●

●
● ●

●
●●

●
●●

●

●
●

●
●●

●
●

●●●
●

●

●
●●●●●

●
●

●●●●
●●●●● ●●●●●●

●●●●●
●●

●

●

●

●

●
●

●
●●●

●
● ●●

●
●●●●●

●

●

●

●
●

●
●●

●
●

●
●●

●●●
●●●

●

●
●

●

●

●
●●

●
●

●

●
●●

●
●

●● ●● ●
● ●● ●

●
●●●

●●●●●●
●●●●●
●●

●

●
●●
●

●

●

●

●●●●●
●

●●

●

●

●
●●

●
●

●
●

●

●●●
●●●●●
●●●

●

●

●
●

●

●

●

●

●
●

●●
●●
●●●

● ●
● ●●●● ● ●

●
●●

●●●
●●●●●
●●●●●●

●● ●●●●
● ●●●

●●●●●
●●●●●
●●●●

●●●●●
●

● ●●●
●●●

●●
●●●●●
●●●

●

●

●
●

●

●

●●●
●●

●
●

●●●●

●

●
●

●
●

●

●
●●●

●●

●●●●

●

●

●

●
●

●

●

●

●
●

●
●●●
●

●

●

●

●
●●●

●●

●● ●●

●●●
● ●●●●●●●●

●
●

●●●
●●

●●●●●●
●
●●●●●

●
●

●

●

●●

●
●● ●

●
●
●
● ●

●

●●

●●
●●●

●
●

●
●●

●●

●●

●
●

●●
●
●

●●

●●

●
●
●
●
●●
●

●●●●●●

● ●

●
● ●●●●

●●●●

●●

●●

●

●

●●
●●

●
●

●
●

●●

●●

●●

● ●

●
●

●
●

●
●

●

●●

●●

●
●

● ●
●●

●

●●●●●●

●●

●●●
●

●●●●
●
●

●●

●
●

●●●
●●●
●●●●●●●●●●

●
●

●●●●
●●●

●●●●●●●●●●●●●●
●

●
●

● ●●
●

●●●●●
●

●
●

●

●

●●

●

●

●
●●●

●●

●

●

●
●

●

●

●
●

●●

●
●

●

●
●

● ●●
●

●●
●

●●●●

●

●●
●

●●
●●●

●
●● ●●

●

●●

●

●
●

●●
●

●

●
●

●

●

●

●●

●

●●
●●

●

●●
●●

●
●

●

●

●
●

●

●●
●
●

●

●
●●●

●
●●●

●
●

●
●●●

●
●

●
●●●

●

●●●●●
●●●●●●

●

●●

●
●●●●

●
●

●
●
●

●
●●

●
●●●●

●

●
●
●

●
●●●

●
●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●●●●●

●

●

●

●
●

●

●

●

●

●●
●

●
●
●

●

●

●

●
●

●●

●

●
●

●
●

●
●

●
●

●

●

● ●●
●

●
●●●●

●

●●●
●● ●

●
●

●
●●●●●

●

●
●

●
●

●●●
●● ●

●
●●●

●
●●●

●

●
●

●

●
●

●●●
●

●●

●

●
●
●

●

●
●

●

●
● ●

●
●

●

●
●
●

●

●
●

●●
●

●
●

●

●

●
●

●

●

●

●●●

●

●●
●●

●●●●●

●

●●●●
●● ●●●●

●

●
●

●
●

●●●●●

●

●
●●●●●

●●●●●
●●

●

●
●

●●●

●
●

●

●

●

●

●●●
●

Figure 5: Multiple edit-imputation estimates of 3-way margin proportions versus their actual pop-
ulation values for a single contaminated sample with ε = 0.4. The left corresponds to the EI-DPM
method with a strong ε ∼ Beta(1, 105) prior; the right panel to the F-H method.
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Figure 6: Average over 500 replications of the multiple edit-imputation estimates of 3-way margin
proportions versus their actual population values for model and faulty data (ε = 0.4) without
undetectable errors. EI-DPM method on the left. F-H on the right.
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Figure 7: Average over 500 replications of the multiple imputation estimates of 3-way margin
proportions versus their actual population values, for faulty data with low error rate ε = 0.1.
EI-DPM in left panel. F-H in right panel.

as expected the differences are less pronounced due to fewer imputations. See the online supplement

for additional results and details on this and other experiements.

5 Concluding Remarks

As discussed by Kim et al. (forthcoming), agencies using F-H approaches could force higher prob-

ability of editing certain fields based on combinations of variables from other fields. For example,

for a reported male with a hysterectomy, the agency could decide to change hysterectomy status

from yes to no when the person reports female and 20 years old, whereas change sex from male

to female when the person reports having a hysterectomy and 60 years old. Such heuristics could

get cumbersome when based on multivariate relationships involving many variables. The EI-DPM

automatically lets the data identify unusual combinations based on relationships among all vari-

ables, thereby potentially leveraging important associations that were not anticipated by the agency

(Kim et al., forthcoming). Unlike F-H approaches with such heuristics, the EI-DPM recognizes the

uncertainty in the fields to be edited. The 20 year old person still could be a woman who has
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undergone a hysterectomy, or a 20 year old man who has not.

The EI-DPM approach can handle missing values simultaneously with erroneous values. One

sets Eij = 1 for all fields with missing values, forcing xij to be imputed. We note that this presumes

values are missing at random, as is typical in applications of edit-imputation. It also presumes that

the same error location and true response models describe the records with errors and records with

missing data.

The EI-DPM method can be computationally efficient. In most of our examples with sample

sizes n = 1000, producing the 50 multiply edited-imputed datasets from a single faulty dataset

took only approximately 140 seconds, using personal desktop computers. Computation times are

strongly dependent on the particular application. Naturally, longer computing times are required

for larger sample sizes (e.g., it took 641 seconds to create 50 completed datasets with a sample

of n = 5000). Longer computation times also are required when the model uses strong prior

specifications for the error rates that do not accord with the true values, for example, using ε ∼

Beta(1, 105) when in fact ε = 0.4. This results from the difficulty of imputing values within the

feasible region C \ S when the error rate is estimated with a severe bias. We also note that the

proposed sampling algorithm offers ample opportunities for optimization through parallelization.

In particular, the many imputation steps (Section 3.2.1, and steps 1 and 6 in Section 3.2.2) can be

easily split among different processors or computers. Our current implementation, available upon

request, is single threaded C++ with an interface in R. We are currently testing an R package

implementing the model in Section 2.3 that will be made available on CRAN.

Independent Bernoulli error location models, potentially with variable-specific error rates, are

simple specifications useful for many applied settings. However, sometimes more complex models

are appropriate. For example, errors may be correlated within records in situations where individ-

uals tend to have different propensity to commit errors. We conjecture that edit-imputation can

be improved in such cases by using mixture models for the vector of error locations. We believe

that developing and evaluating versions of the EI-DPM is a topic worthy of future research.
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Supplementary Materials

The supplementary materials include the description of the algorithm for transforming a collection

of table slice definitions into a collection of non-overlapping definitions. It also include results from

additional simulations.
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A Appendix - Proof of Theorem 1

Proof. To compute the required pmf we need to marginalize (xi1, ..., xiJ) in Equation (21). Let

Ωm = (xi1, ..., xim, ∗, ..., ∗︸ ︷︷ ︸
J−m times

).

Then,

p = p(xim|...− {Ei, xi(m+1), xi(m+2), ..., xiJ})

∝
∑

x∈Ωm

I(x /∈ S)

J∏
j=1

(εjqj)
I(xj 6=yij)(1− εj)I(xj=yij)λjk[xj ]

=
∑

x∈Ωm

I(x /∈ S)
J∏
j=1

aj(xj)

where x = (x1, ..., xJ). Since by hypothesis S =
⋃C
c=1µc and the µcs are disjoint, we have that

I(x /∈ S) = 1− I(x ∈ S)

= 1−
C∑
c=1

I(x ∈ µc).

Therefore,

p ∝
∑

x∈Ωm

(
1−

C∑
c=1

I(x ∈ µc)

)
J∏
j=1

aj(xj)

=
∑

x∈Ωm

 J∏
j=1

aj(xj)−
C∑
c=1

I(x ∈ µc)
J∏
j=1

aj(xj)


=
∑

x∈Ωm

J∏
j=1

aj(xj)−
C∑
c=1

∑
x∈Ωm∩µc

J∏
j=1

aj(xj). (24)

Define

ρ(c,m) =
(
ρ

(c,m)
1 , ..., ρ

(c,m)
J

)
= int(Ωm,µc). (25)
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Then, by properties of the int(·, ·) operation, we have that

Ωm ∩ µc = ρ(c,m).

Therefore, substituting in (24),

p ∝
∑

x∈Ωm

J∏
j=1

aj(xj)−
C∑
c=1

∑
x∈ρ(c,m)

J∏
j=1

aj(xj)

=

m∏
j=1

aj(xij)

 ∑
x∈Ωm

J∏
j=m+1

aj(xj)−
C∑
c=1

∑
x∈ρ(c,m)

J∏
j=m+1

aj(xj)


∝ am(xim)

 ∑
x∈Ωm

J∏
j=m+1

aj(xj)−
C∑
c=1

∑
x∈ρ(c,m)

J∏
j=m+1

aj(xj)


∝ am(xim)

 J∏
j=m+1

Lj∑
x=1

aj(x)−
C∑
c=1

∏
{j:j>m,ρ(c,m)

j 6=∗}

aj(ρ
(c,m)
j )

∏
{j:j>m,ρ(c,m)

j =∗}

Lj∑
x=1

aj(x)


= am(xim)

 J∏
j=m+1

bj −
C∑
c=1

∏
{j:j>m,ρ(c,m)

j 6=∗}

aj(ρ
(c,m)
j )

∏
{j:j>m,ρ(c,m)

j =∗}

bj


= am(xim)

 J∏
j=m+1

bj −
C∑
c=1

J∏
j=m+1

aj(ρ
(c,m)
j )I(ρ

(c,m)
j 6=∗)b

I(ρ
(c,m)
j =∗)

j


completing the proof.
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