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Abstract

We propose an approach for multiple imputation of items missing at random in

large-scale surveys with exclusively categorical variables that have structural zeros.

Our approach is to use mixtures of multinomial distributions as imputation engines,

accounting for structural zeros by conceiving of the observed data as a truncated sample

from a hypothetical population without structural zeros. This approach has several

appealing features: imputations are generated from coherent, Bayesian joint models

that automatically capture complex dependencies and readily scale to large numbers

of variables. We outline a Gibbs sampling algorithm for implementing the approach,

and we illustrate its potential with a repeated sampling study using public use census

microdata from the state of New York, USA.
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1 Introduction

Many agencies collect surveys comprising large numbers of exclusively categorical variables.

Inevitably, these surveys suffer from item nonresponse that, when left unattended, can re-
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duce precision or increase bias (Little and Rubin, 2002). To handle item nonresponse, one

approach is multiple imputation (Rubin, 1987), in which the agency fills in the missing

items by sampling repeatedly from predictive distributions. This creates M > 1 completed

datasets that can be analyzed or disseminated to the public. When the imputation models

meet certain conditions (Rubin, 1987, Chapter 4), analysts of the M completed datasets can

make valid inferences using complete-data statistical methods and software. For reviews of

multiple imputation, see Rubin (1996), Barnard and Meng (1999), Reiter and Raghunathan

(2007), and Harel and Zhou (2007).

Multiple imputation typically is implemented via one of two strategies. The first is to

posit a joint model for all variables and estimate the model using Bayesian techniques, usually

involving data augmentation and Markov chain Monte Carlo (MCMC) sampling. Common

joint models include the multivariate normal for continuous data and log-linear models for

categorical data (Schafer, 1997). The second strategy is to use approaches based on chained

equations (Van Buuren and Oudshoorn, 1999; Raghunathan et al., 2001; White et al., 2011).

The analyst estimates a series of univariate conditional models and imputes missing values

sequentially with these models. Typical conditional models include normal regressions for

continuous dependent variables and logistic or multinomial logistic regressions for categorical

dependent variables.

As noted by Vermunt et al. (2008) and Si and Reiter (2012), chained equation strategies

are not well-suited for large categorical datasets with complex dependencies. For any condi-

tional (multinomial) logistic regression, the number of possible models is enormous once one

considers potential interaction effects. Carefully specifying each conditional model is a very

time-consuming task with no guarantee of a theoretically coherent set of models; indeed,

for this reason many practitioners of chained equations use default settings that include

main effects only in the conditional models. By excluding interactions, analysts risk gener-

ating completed datasets that yield biased estimates. We note that similar model selection
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difficulties plague approaches based on log-linear models.

To avoid these issues, Si and Reiter (2012) propose a fully Bayesian, joint modeling

approach to multiple imputation for high-dimensional categorical data based on latent class

models. The idea is to model the implied contingency table of the categorical variables as

a mixture of independent multinomial distributions, estimating the mixture distributions

nonparametrically with Dirichlet process prior distributions. Mixtures of multinomials can

describe arbitrarily complex dependencies and are computationally expedient, so that they

are effective general purpose multiple imputation engines. Indeed, Si and Reiter (2012) show

in simulation studies that their approach can offer more reliable imputations than default

applications of chained equations.

The approach of Si and Reiter (2012) does not deal with an important and prevalent

complication in survey data: certain combinations of variables may not be possible a priori.

These are called structural zeros (Bishop et al., 1975). For example, in the United States it is

impossible for children under age 15 to be married. Structural zeros also can arise from skip

patterns in surveys. The imputation algorithms of Si and Reiter (2012), if applied directly,

allow non-zero probability for structural zeros, which in turn biases estimates of probabilities

for feasible combinations.

In this article, we present a fully Bayesian, joint modeling approach to multiple impu-

tation of large categorical datasets with structural zeros. Our approach blends the latent

class imputation model of Si and Reiter (2012) with the approach to handling structural

zeros developed by Manrique-Vallier and Reiter (2012). Using simulations, we show that the

approach generates multiply-imputed data sets that do not violate structural zero conditions

and can have well-calibrated repeated sampling properties.
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2 Bayesian Latent Class Imputation Model With Struc-

tural Zeros

Suppose that we have a sample of n individuals measured on J categorical variables. Each

individual has an associated response vector xi = (xi1, xi2, ..., xiJ), whose components take

values from a set of Lj levels. For convenience, we label these levels using consecutive

numbers, xij ∈ {1, ..., Lj}, so that xi ∈ C =
∏J

j=1{1, ..., Lj}. Note that C includes all

combinations of the J variables, including structural zeros, and that each combination x

can be viewed as a cell in the contingency table formed by C. Let xi = (xobsi ,xmisi ), where

xobsi includes the variables with observed values and xmisi includes the variables with missing

values. Finally, let S = {s1, . . . , sC}, where sc ∈ C and c = 1, . . . , C < |S|, be the set of

structural zero cells, i.e., Pr(xi ∈ S) = 0.

2.1 Latent Class Models

As an initial step, we describe the Bayesian latent class model without any concerns for

structural zeros and without any missing data, i.e., xi = xobsi . This model is a finite mixture

of product-multinomial distributions,

p(x | λ,π) = fLCM(x|λ,π) =
K∑
k=1

πk

J∏
j=1

λjk[xj], (1)

where λ = (λjk[l]), with all λjk[l] > 0 and
∑Lj

l=1 λjk[l] = 1. Here, π = (π1, . . . , πK) with∑K
k=1 πk = 1. This model corresponds to the generative process,

xij | zi
indep∼ Discrete1:Lj (λjzi [1], . . . , λjzi [Lj]) for all i and j (2)

zi | π
iid∼Discrete1:K(π1, . . . , πK) for all i. (3)
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As notation, let (X ,Z) be a sample of n variates obtained from this process, with X =

(x1, . . . ,xn) and Z = (z1, . . . , zn). For K large enough, (1) can represent arbitrary joint

distributions for x (Suppes and Zanotti, 1981; Dunson and Xing, 2009). And, using the

conditional independence representation in (2) and (3), the model can be estimated and

simulated from efficiently even for large J .

For prior distributions on π, we follow Si and Reiter (2012) and Manrique-Vallier and

Reiter (2012). We have

λjk[·]
indep∼ Dirichlet(1Lj) (4)

πk = Vk
∏
h<k

(1− Vh) (5)

Vk
iid∼Beta(1, α) for k = 1, . . . , K − 1;VK = 1 (6)

α ∼ Gamma(.25, .25) (7)

The prior distributions in (4) are equivalent to uniform distributions over the support of the

J×K multinomial conditional probabilities and hence represent vague prior knowledge. The

prior distribution for π in (5) – (7) is an example of a finite-dimensional stick-breaking prior

distribution (Sethuraman, 1994; Ishwaran and James, 2001). As discussed in Dunson and

Xing (2009) and Si and Reiter (2012), it typically allocates Z to fewer than K classes, thereby

reducing computation and avoiding over-fitting. For further discussion and justification of

this model as an imputation engine, see Si and Reiter (2012).

2.2 Truncated Latent Class Models

The latent class model in (1) does not naturally specify cells with structural zeros a pri-

ori, because it assumes a positive probability for each cell. Thus, to represent tables with
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structural zeros, we need to truncate the model so that

fTLCM(x | λ,π, S) ∝ 1{x /∈ S}
K∑
k=1

πk

J∏
j=1

λjk[xj]. (8)

As Manrique-Vallier and Reiter (2012) show, obtaining samples from the posterior distribu-

tion of parameters (λ,π), conditional on a sample X 1 = (x1, ...,xn), can be greatly facilitated

by adopting a sample augmentation strategy akin to those in Basu and Ebrahimi (2001) and

O’Malley and Zaslavsky (2008). We consider X 1 to be the portion of variates that did not

fall into the set S from a larger sample, X , generated directly from (1). Let n0, X 2, and

Z2 be the the (unknown) sample size, response vectors, and latent class labels for the por-

tion of X that did fall into S. Using a prior distribution from Meng and Zaslavsky (2002),

Manrique-Vallier and Reiter (2012) show that if p(n0|n) ∝ 1/(n + n0), the posterior distri-

bution of (λ,π) under the truncated model (8) can be obtained by integrating the posterior

distribution under the augmented sample model over (n0,X 2,Z1,Z2).

In doing so, Manrique-Vallier and Reiter (2012) develop a computationally efficient algo-

rithm for dealing with large sets of structural zeros when they can be expressed as the union

of sets defined by margin conditions. These are sets defined by fixing some levels of a subset

of the categorical variables, for example, the set of all cells such that {x ∈ C : x3 = 1, x6 = 3}.

Manrique-Vallier and Reiter (2012) introduce a vector notation to denote margin conditions,

which we use here as well. Let µ = (µ1, µ2, ..., µJ) where, for j = 1, . . . , J , we let µj = xj

whenever xj is fixed at some level and µj = ∗ otherwise, where ∗ is special notation for a

placeholder. Using this notation and assuming J = 8, the conditions that define the exam-

ple set above (x3 = 1 and x6 = 3) correspond to the vector (∗, ∗, 1, ∗, ∗, 3, ∗, ∗). To avoid

cluttering the notation, we use the vectors µ to represent both the margin conditions and

the cells defined by those margin conditions, determined from context.
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2.3 Estimation and Multiple Imputation

We now discuss how the model in Section 2.2 can be estimated, and subsequently converted

into a multiple imputation engine, when some items are missing at random. The basic

strategy is to use a Gibbs sampler. Given a completed dataset (xobs,xmis), we take a draw of

the parameters using the algorithm from Manrique-Vallier and Reiter (2012). Given a draw

of the parameters, we take a draw of xmis as described below.

Formally, the algorithm proceeds as follows. Suppose that the set of structural zeros can

be defined as the union of C disjoint margin conditions, S = ∪Cc=1µc, and that we use the

priors for α, λ and π defined in Section 2.1. Given xi = (xobsi ,xmisi ) for i = 1, . . . , n, the

algorithm of Manrique-Vallier and Reiter (2012) samples parameters as follows.

1. For i = 1, . . . , n, sample z1i ∼ Discrete1:K(p1, . . . , pk), with pk ∝ πk
∏J

j=1 λjk[x
1
ij].

2. For j = 1, . . . , J and k = 1, . . . , K, sample λjk[·] ∼ Dirichlet
(
ξjk1, . . . , ξjkLj

)
, with

ξjkl = 1 +
∑n

i=1 1{x1ij = l, z1i = k}+
∑n0

i=1 1{x2ij = l, z2i = k}.

3. For k = 1, ..., K − 1 sample Vk ∼ Beta(1 + νk, a+
∑K

h=k+1 νk) where νk =
∑n

i=1 1{z1i =

k}+
∑n0

i=1 1{z2i = k}. Let VK = 1 and make πk = Vk
∏

h<k(1− Vh) for all k = 1, ..., K.

4. For c = 1, . . . , C, compute ωc = Pr(x ∈ µc|λ, π) =
∑K

k=1 πk
∏

µcj 6=∗ λjk[µcj].

5. Sample (n1, . . . , nC) ∼ NM(n, ω1, . . . , ωC), where NM is the negative multinomial

distribution, and let n0 =
∑C

c=1 nc.

6. Let κ← 1. Repeat the following for each c = 1, . . . , C.

(a) Compute the normalized vector (p1, . . . , pK), where pk ∝ πk
∏

j:µcj 6=∗
λjk[µcj].

(b) Repeat the following three steps nc times:

i. Sample z2κ ∼ Discrete(p1, . . . , pk),
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ii. For j = 1, . . . , J sample

x2κj ∼


Discrete1:Lj(λjz2κ [1], . . . , λjz2κ [Lj]) if µcj = ∗

δµjc if µcj 6= ∗

where δµcj is a point mass distribution at µcj,

iii. Let κ← κ+ 1.

7. Sample α ∼ Gamma (a− 1 +K, b− log πK).

Having sampled parameters, we now need to take a draw of xmis. For i = 1, . . . , n,

let mi = (mi1, ...,miJ) be a vector such that mij = 1 if component j in xi is missing and

mij = 0 otherwise. Assuming that data are missing at random, we need to sample only the

components of each xi for which mij = 1, conditional on the components for which mij = 0.

Thus, we add an eighth step to the algorithm.

8. For i = 1, . . . , n, sample xmisi from its full conditional distribution,

p(xmisi |...) ∝ 1{xi /∈ S}
∏

j:mij=1

λjzi [xij]. (9)

In the absence of structural zeros, the xij to be imputed are conditionally independent

given zi, making the imputation task a routine multinomial sampling exercise (Si and Reiter,

2012). However, the structural zeros in S induce dependency between the components. Thus,

we cannot simply sample the components independently of one another. A naive approach

is to use an acceptance-rejection scheme, sampling repeatedly from the proposal distribution

p(xmis∗) =
∏

j:mij=1 λjzi [xij] until obtaining a variate such that xmis∗ /∈ S. However, when

the rejection region is large or has a high probability, this approach can be very inefficient.

Instead we suggest forming additional Gibbs sampling steps, computing the conditional

distributions of all missing components so that they can be sampled individually. Let
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Rep(xi, j, l) be the vector that results from replacing component j in xi by an arbitrary

value l ∈ {1, 2..., Lj}. The full conditional distribution of missing component j of xi (when

mij = 1) is p(xij|...) ∝ 1{Rep(xi, j, xij) /∈ S}λjzi [xij]. Thus, we replace step 8 in the algo-

rithm with

8’. For each (i, j) ∈ {(i, j) : mij = 1}, sample xij ∼ Discrete1:Lj(p1, ..., pLj), where pl ∝

λjzi [l]1{Rep(xi, j, l) /∈ S}.

The definition of pl implies trimming the support of the full conditional distribution of xij

from {1, ..., Lj} to only values that avoid xi ∈ S, given current values of {xij′ : all j′ 6= j}.

To obtain M completed datasets for use in multiple imputation, analysts select M of

the sampled xmis after convergence of the Gibbs sampler. These datasets should be spaced

sufficiently so as to be approximately independent (given xobs). This involves thinning the

MCMC samples so that the autocorrelations among parameters are close to zero.

3 Simulation study

To illustrate empirically the performance of this imputation engine, we conducted a repeated

sampling experiment using an extract of the 5% public use microdata sample from the

2000 U.S. census data for the state of New York (Ruggles et al., 2010). The data include

N = 953, 076 individuals and ten categorical variables: ownership of dwelling (3 levels),

mortgage status (4 levels), age (AGE: 9 levels), sex (2 levels), marital status (6 levels),

single race identification (5 levels), educational attainment (11 levels), employment status (4

levels), work disability status (3 levels), and veteran status (3 levels). These variables define

a contingency table with 2,566,080 cells, of which 2,317,030 correspond to structural zeros.

We treat the N records as a population from which we take 100 independent samples

of size n = 1000. For each sample, we impose missing data by randomly blanking 30%

of the recorded item-level values of each variable. We then estimate the truncated latent
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class model of Section 2.3, using 100, 000 MCMC iterates and discarding the first 50, 000 as

burn-in. From each remaining chain we create M = 50 completed datasets via a systematic

sample of every 1, 000 iterations.

In each sample, we estimate 95% confidence intervals for 667 two-way joint probabili-

ties (that are not structurally zero) using the multiple imputation combining rules of Rubin

(1987). We also compute the corresponding intervals with the data before introducing miss-

ing values, which we call the complete data. The 667 probabilities include all those with

marginal frequencies that do not include random zeros in the 100 samples; these would be

problematic to estimate even without missing data.

Figure 1 shows the percentages of the one hundred 95% confidence intervals that cover

their population values. In general, the two empirical coverage rates look similar and are

within Monte Carlo error of the nominal level. A few intervals based on the multiple imputa-

tion have low coverage rates—in particular, 17 are below 85%, while their counterparts with

complete data are closer to their nominal levels. However, as evident in Figure 2, the abso-

lute magnitudes of the biases in the point estimates of these quantities tend to be modest.

For example, for the point labeled A on Figure 1, the average of the 100 multiple imputation

point estimates equals .058 whereas the corresponding average in the 100 complete datasets

equals .075. These encouraging results are in accord with the results in Si and Reiter (2012),

whose simulations included up to 50 variables (without any structural zeros).

4 Concluding Remarks

Structural zero restrictions are an important feature of many surveys, e.g., impossible com-

binations and skip patterns. They also play a key role in imputation. Ignoring structural

zeros when estimating models can result in severe biases when estimating quantities that de-

pend on joint or conditional probabilities. This translates to generating imputed values that
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Figure 1: Comparison of empirical coverage rates (over 100 trials) of confidence intervals for
two-way marginal probability estimates computed from the complete samples vs. multiply
imputed datasets. Discontinuous lines indicate nominal coverage level. Random Unif(-0.01,
0.01) noise added for clarity. Point labeled “A” discussed in the main text.
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Figure 2: Mean (over 100 trials) two-way marginal probability estimates computed from the
multiple imputed datasets vs computed from the complete samples. Points marked with
crosses are estimates for which the empirical coverage of the multiple-imputation based 95%
confidence intervals fell below 85%.
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do not accurately reflect the dependency structure in the data, and subsequently can lead

to biased multiple imputation inferences. Additionally, structural zeros often function as

consistency rules. Not enforcing them in imputation could result in completed datasets with

inconsistent responses—like widowed toddlers or non-homeowners paying property taxes—

that many agencies would be reluctant to release and many public users would find difficult

to analyze. The approach suggested here based on Bayesian truncated latent class mod-

els offers survey researchers a way to avoid such problems, leading to multiple imputations

from theoretically coherent and computationally expedient models that can capture complex

dependencies, and simultaneously reducing the labor and guesswork in model specification

that often accompanies traditional approaches to multiple imputation for categorical data.
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