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Abstract

The most basic quantitative question about the consequences of armed conflicts
is perhaps how many people were killed. During and after conflicts, it is common to
attempt to create tallies of victims. However, destroyed infrastructure and institu-
tions, danger to field workers, and a reasonable suspicion of data collection by vic-
tim communities limit the result of these efforts to incomplete and non-representative
lists. Capture-Recapture (CR) estimation, also known as Multiple Systems Estimation
(MSE) in the context of human populations, is a family of methods for estimating the
size of closed populations based on matched incomplete samples. CR methods vary
in details and complexity, but they all ultimately rely on analyzing the patterns of
inclusion of individuals across samples to estimate the probability of not being ob-
served and then the number of unobserved individuals. In this discussion, we describe
the versions MSE with which analysts have estimated the total number casualties in
armed conflicts. We explore the advances of the last fifteen years, and we describe
outstanding statistical challenges.

1 Introduction

“How many people were killed?” This is perhaps the most basic quantitative question
about the consequences of armed conflicts. While many groups attempt to create tallies
of victims, these lists are usually subject to incomplete and non-representative regis-
tration. Difficulties faced by data-collection efforts include destroyed infrastructure,
danger to field workers, suspicion of data collection by victim communities, among
others. Tempting as it is, simply pooling existing registries together and eliminating
duplicates is unlikely to produce a full enumeration. The result of such an approach
can only be taken as an incomplete, nonrepresentative sample with unknown biases,
and it can only lead to a lower bound on the total number of casualties.
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Capture-Recapture (CR) estimation takes advantage of the multiple registries of
victims that are often generated during or after a conflict. CR, also known as Multiple
Systems Estimation (MSE) in the context of human populations, is a family of methods
for estimating the size of closed populations based on matched incomplete samples. CR
methods vary in details and complexity, but they all rely on analyzing the patterns of
inclusion of individuals in the samples to estimate the probability of not being observed,
and then the number of unobserved individuals. CR methods are best known for their
application to animal abundance estimation, where they have developed considerably.
In the context of conflict casualty estimation, they were first used in Guatemala by Ball
(2000), where researchers used three incomplete sources of information, which jointly
documented more than 54,000 unique killings, and used CR to estimate the total to
be more than 132,000. This analysis and several follow-on projects helped support the
case that the Guatemalan Army committed acts of genocide against the indigenous
Mayan population (see Ball and Price, 2018).

Several challenges arise when using CR methodologies for casualty estimation.
Many of these problems are common to other applications, and there are readily avail-
able methodologies to address them. For example, dependence between lists can be
addressed using a log-linear CR approach (Bishop et al., 1975). Other problems in
casualty estimation differ substantially from other contexts. For example, while sev-
eral models for controlling individual heterogeneity in capture have been proposed in
the ecology literature (Otis et al., 1978), most of them assume a symmetrical form of
heterogeneity which is not realistic in our context as lists are not exchangeable.

In this article we discuss the challenges of applying CR methods to the problem of
estimating the total number of deaths in armed conflicts, and explore the advances of
the last fifteen years in the area. We also describe outstanding challenges and speculate
possible solutions.

2 Capture-Recapture in Casualty Estimation:

Challenges and Developments

2.1 The Capture-Recapture Approach

Consider a closed population of N individuals, and J ≥ 2 incomplete lists taken from
that population. In this context N will be the unknown number of victims of the
armed conflict, and J the number of partial lists available. Let xij = 1 if individual
i is recorded in list j and xij = 0 otherwise. We arrange all these indicators into
individual-level vectors to form N individual capture patterns xi = (xi1, ...xiJ), one
for each element of the population. For example a pattern xi = (0, 0, 1, 1) indicates
that individual i was recorded by lists 3 and 4, but missed by the first two. We note
that even though each individual has a capture pattern, any individual with pattern
0 = (0, ..., 0) is by definition unobserved. Our objective is to produce an estimate of
how many individuals in the population belong to that class.

Capture-Recapture estimation of N is based on estimating the probability mass
function f(x|θ) for the capture patterns x ∈ {0, 1}J from a sample truncated at x =
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0. We then use that model to predict f(0|θ), and then N . In order for this to be
possible it is necessary, at the very least, that whatever the model f(x|θ) is, it can be
estimated from the data, which, by definition, will never include the capture patterns
0. Conversely, even though we cannot observe 0, the model should make it possible
to evaluate f(0|θ). The model’s other assumptions are mostly related to the specific
form of the data generation process, and these will be encoded as specific parametric
assumptions in f(·|θ).

Two assumptions are commonly associated with CR estimation. The first one,
independence, states that the probability of appearing in one list is not affected by
having appeared in another list. The second one, homogeneity, requires that this
probability distribution is the same for each individual in the population. These two
can be expressed as the so-called independence model :

xi
iid∼

J∏
j=1

p
xij

j (1− pj)1−xij , i = 1, ..., N, (1)

where pj is the probability of appearing in list j. The independence model lies behind
the earliest and most famous CR techniques, for example the Petersen estimator,

N̂ =
nA · nB
nAB

, (2)

where nA and nB are respectively the number of observed individuals in lists A and B,
and nAB is the number of individuals in common between the two.

Independence estimators like Petersen’s are still occasionally useful—for instance,
when both lists are independent simple random samples from the population—but their
assumptions are unrealistic in the casualty estimation setting. Specifically, probabil-
ities of capture tend to vary, sometimes greatly, from individual to individual. From
qualitative conversations with victim communities and grassroots human rights ac-
tivists documenting abuses, we have learned that the two primary factors that affect
the probability that an event will be observed are trust and logistics. Interviewers
are asking survivors to relate events that are among the most traumatic situations
that can happen to anyone. The survivors’ willingness to report these events requires
them to trust the interviewers. Conversely, if survivors perceive the interviewers as
from rival political positions, they may choose not to disclose information to protect
themselves. The second major influence on documentation dynamics is the logistical
capability of each organization. Can the groups conducting documentation access the
affected communities? Much mass violence occurs in remote areas. Groups that have
interviewers willing to make arduous journeys may be better able to capture informa-
tion in those locations. High-resource groups may be able to afford more and more
adaptable vehicles, or in the case of the UN, helicopters.

2.2 List Dependence

Violations of the assumptions underlying (1) in the form of dependence between lists
are common in casualty estimation. In the original Guatemala analysis (Ball, 2000),
researchers observed a form of negative dependence between two of the lists. The
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first of these dependent lists was the result of a qualitative investigation that took
testimonies among Catholic religious communities conducted in the mid-1990s; the
second was gathered by a coalition of NGOs mostly associated with the political left
which took testimonies in the early 1990s among communities which had been part of
the guerrillas’ civilian base. Researchers noted that people in the religious communities
that trusted the Catholic researchers would be less likely to report to the NGOs, and
vice-versa. In this scenario, individual witnesses prefer one documentation project to
another, leading to negative list dependence.

Fienberg (1972) proposed to account for list dependencies through their explicit
modeling as list-by-list interactions in log-linear models (see also Bishop et al., 1975).
For example, using Bishop et al. (1975) notation, a model accounting for dependence
between lists 1 and 2 when three lists are available would be

logmijk = u+ u1(i) + u2(j) + u3(k) + u12(ij),

where mijk = E[nijk] and nijk is the number of individuals with capture pattern
(i, j, k) ∈ {0, 1}3. A conditional maximum likelihood estimator for the undercount is
given by the formula

n̂000 =
m̂001m̂010m̂100m̂111

m̂011m̂101m̂110
. (3)

This formula results from a no-second-order interaction assumption in the log-linear
model, that is, u123(ijk) = 0, necessary to ensure that the model is identifiable and that
f(0|θ) can be calculated.

Log-linear CR is a mature technology that has been used in several casualty estima-
tion projects; e.g. Kosovo 2002 (Ball et al., 2002), Peru 1980–2000 (Ball et al., 2003),
Guatemala 1982–1983 (Ball and Price, 2018), and Bosnia in 1992–1995 (Zwierzchowski
and Tabeau, 2010). Nevertheless, this approach has several important limitations, and
we will discuss some of them later in this article.

2.3 Heterogeneity

Differences in the probabilities of being listed due to individual traits are referred in the
CR context as heterogeneity of capture probabilities (or “heterogeneity”, for short). As
discussed in the introduction, our experience has led us to believe that heterogeneity
is the primary problem in CR applied to casualty estimation. Victims and witnesses
of violence are subject to individual attributes that affect the listability of victims. We
mentioned the problem of the degree of trust that witnesses put in different projects
as one reason. Another important aspect is the social visibility of victims. Adults
tend to be better known by their communities than children; authorities and famous
people tend to be reported more than regular people; victims in remote rural locations
tend to be less frequently reported than people in cities. All of these, and other more
locally-specific or less describable factors, contribute to the violation of the “equal
distribution” assumption in model (1) and need special treatment. We now describe
two approaches to deal with the effects of heterogeneity in CR.

The first approach to deal with heterogeneity is stratification (Sekar and Deming,
1949). The idea is to use a discrete covariate that is known or suspected to be related
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to the source of heterogeneity to segment the population into homogeneous (or at least
more homogeneous) sub-populations, and estimate within them separately. A common
choice in this context is place of death. For example in Ball et al. (2003) researchers
resorted to expert knowledge for dividing the Peruvian territory into 59 geographic
strata roughly corresponding to known insurgent-counterinsurgent conflict dynamics,
which were then treated separately. Other typical choices in casualty estimation are
perpetrator agent (Ball et al., 2003) and period (Ball et al., 2002).

When properly executed, stratification can greatly help reduce the impact of het-
erogeneity; however, it also has important limitations. The most obvious one is the
reduction of within-strata sample sizes. This reduces inferential power and can lead to
identifiability problems. Another one is the need of data for the stratification, and of
specialized knowledge about the relationship between heterogeneity and the available
covariates.

A second, complementary approach to dealing with heterogeneity is through mod-
eling. Sometimes heterogeneity manifests itself as list dependency and can be dealt
with using log-linear and related methods. For example, even though we presented the
case of Guatemala as an illustration of list dependency, a closer look reveals that the
driver of said dependency were differences of listability due to individual traits, i.e. the
level of trust each individual had on each documentation project.

A more direct modeling strategy is to directly represent the individual traits that
lead to the differential capturability. This approach was first introduced by Sanathanan
(1973), and was greatly developed in the context of animal abundance estimation as
the model Mh and its variants (Otis et al., 1978). All these approaches have in common
to introduce some form of individual-level random effect ωi driving capturability:

xi|θ, ωi
ind∼ f(·|θ, ωi), ωi

iid∼H.

Most of the models developed in the animal estimation literature assume symmetric
heterogeneity effects, that is, ωi affects all lists in the same direction. An example of
this structure is the Rasch model (Agresti, 1994; Fienberg et al., 1999). This makes
sense in ecology applications: if animals possess characteristics that make them difficult
(or easy) to capture in general, they should be so for any trapping occasion.

Symmetric heterogeneity does not hold in casualty estimation. Different documen-
tation projects often have different objectives, capabilities, and sympathies, resulting
in different access to different types of victims. This means that the same individual
traits ωi may have different effects on different lists, sometimes in opposite directions.
A dramatic case was observed in Peru (Ball et al., 2003). There victims of the Shining
Path tended not to be captured by NGOs or the Ombudsman office, while victims
of the armed forces tended to be favored by NGOs. In these cases symmetric effect
models, like Rasch models, would be inadequate.

Models that allow for less constrained forms of heterogeneity have been proposed
for casualty CR estimation. Manrique-Vallier (2016) proposed the use of Dirichlet
process mixtures of independence models (NPLCM model). These models have been
successfully used for re-analyzing heterogeneous data previously analyzed with log-
linear models in Peru (Manrique-Vallier et al., 2019) and Kosovo (Manrique-Vallier,
2016). It has also been used to estimate the total number of people who disappeared in
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the final three days of the Sri Lankan civil war (Ball and Harrison, 2018); the number of
women held as sexual slaves by Japanese authorities during World War 2 in Palembang,
Indonesia (Ball et al., 2018); the number of people killed in drug-related violence in
the National Capital Region of the Philippines (Ball et al., 2019a); and the number
of social movement leaders killed in Colombia in 2016–2017 (Ball et al., 2019b). We
discuss more about them in Section 2.4.

We believe that the use of flexible models that directly address heterogeneity, like
NPLCM, is preferable to techniques that address the induced list dependency, like log-
linear models. In Manrique-Vallier et al. (2019) we re-analyzed the Peruvian data from
Ball et al. (2003) (plus an extra data source) using LCMCR and log-linear models. We
noted that in cases in which results from the two approaches diverged, log-linear models
were complex and required many interaction terms. We attribute this behavior to the
fact that log-linear models can only address heterogeneity through its approximation
using interaction terms and the no-highest-order interaction assumption. While in
some cases a simple log-linear representation exists (as in the Guatemala and Kosovo
cases), in others the necessary models will be highly complex and not identifiable. For
a study on the relationship between LCMCR-type mixtures and log-linear models see
Johndrow et al. (2017).

2.4 Model Selection

Even after selecting a family of models for CR estimation (e.g. log-linear), it is usually
necessary to choose among many competing models. As in any other statistical prob-
lem, model selection can be performed using both knowledge about the problem and
by formal model selection techniques.

An example of the use of substantive knowledge to guide model selection is presented
in (Zwierzchowski and Tabeau, 2010) for Bosnia and Herzegovina. There analysts
for the International Criminal Tribunal for the Former Yugoslavia used twelve data
sources (including eight enumerations of the names of people reported as dead) in a
log-linear model to estimate the total of war casualties. They started by making dual-
system estimates between pairs of systems. They noted which pairs seemed to produce
plausible estimates, and which lead to substantially greater or lower than the plausible
middle estimates. They decided that the pairs of lists that produced greater or lower
estimates were those with substantial interactions. In the discussion, they describe how
specific pairs of lists might be positively or negatively interacting. For example, they
noted two projects that were both based in Sarajevo and both sampled deaths from
Sarajevo with greater probability than deaths elsewhere. In the log-linear model, they
included all the pairwise log-linear terms for the lists that they argued had substantial
interactions. Naturally, such an approach is difficult to justify from a formal statistical
point of view.

Formal model selection procedures have been prominently featured in casualty es-
timation studies using log-linear CR. The earliest of these (e.g. Ball et al., 2002, 2003)
relied on exhaustive searches within the space of hierarchical log-linear models, and
were conducted based on the minimization of indexes that balanced parsimony with
fit, like the BIC or the χ2/df statistic. Although this is common practice in applied
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statistics and in CR in particular, the approach presents some important limitations.
First, even though the model search is data-based (and therefore subject to sampling
variability), estimation is performed conditioning on the selected model. This neglects
the uncertainty associated with the model selection process itself. Second, in many
cases equally plausible models can produce substantially different results with no clear
way of choosing one over the other. Finally, some families of models (like log-linear
with a large number of lists) can be too large to fully evaluate.

Bayesian model averaging (BMA) avoids the model selection issue altogether. In-
stead of selecting one single “best” model, we average the posterior distributions of
interest (in this case over the population size) over all models of a family, weight-
ing by the posterior probability of the models themselves. Lum et al. (2010) used
a BMA approach proposed by Madigan and York (1997) to estimate the number of
fatal human rights violations in the department of Casanare, Colombia, in the period
1998-2007. The method of Madigan and York (1997) uses BMA in the space of decom-
posable graphical models, which is itself a sub-family of hierarchical log-linear models.
Madigan and York (1997)’s method works in practice because discrete decomposable
graphical models allow posterior estimation in closed form, and the number of models
is not too large to evaluate provided the number of lists is small. However, BMA can
become computationally challenging with large numbers of lists. Furthermore, as de-
composable graphical models are a sub-family of hierarchical log-linear models, they
also share some of their limitations; in particular, they might not be sufficiently flexible
for modeling dependence induced by heterogeneity.

A different approach was taken by Manrique-Vallier (2016), who proposed the use
of Dirichlet process mixtures of product-Bernoulli (independence) models. In this case
the model is theoretically infinite-dimensional, but has a structure that modulates the
complexity of the mixture to what is needed to adjust well to the data. Similarly to
BMA, this approach has the advantage of avoiding the model selection problem, but
avoids having to deal with several models to begin with. It also has the advantage of
being computationally tractable, scaling easily to very large numbers of lists.

Recent advances notwithstanding, the problem of model selection in CR estimation
presents a unique challenge. Any formal model selection procedure can only ensure that
the models under consideration fit the observed data well enough to some criterion.
However, since capture pattern 0 is unobservable by definition, there is no way of
ensuring that a model that fits the observed part of the data well enough will lead
to recovery of the true value of fT (0|θT ) under the true model fT (·|θT ). This is a
well-known problem (see e.g. the discussion section in Bishop et al., 1975, Ch. 6), and
the ultimate reason why the non-parametric CR problem is unidentifiable.

2.5 Practical Invisibility: α-Observability

An important assumption for CR estimation is that every individual in the population
of interest must have a positive probability of being listed. With perhaps the exception
of projects actively refusing to register particular victims or types of victims, this
condition is not difficult to meet in the context of casualty estimation: it is implausible
that people can die or disappear without anybody at all noticing.
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A related but less explored problem is when some individuals’ probability of be-
ing listed is indeed positive, but very small. In these cases, even though the classical
assumption of positive probability is satisfied, some individuals might be practically
invisible to the sampling efforts. This phenomenon is specially problematic in hetero-
geneous populations, where it might be the case that we have several lists with plenty
of data from individuals from easily observable sub-populations, but very few or none
from less observable groups.

This problem was studied by Johndrow et al. (2019). They noted that this is
an intrinsic problem in CR estimation under heterogeneity, and that an important
consequence is that the estimation risk of the population size can, in many cases,
be unbounded. As a compromise solution they proposed to abandon the objective
of estimating the true population size, and re-define the problem as estimating the
number of individuals with a probability greater than an arbitrary threshold α of
being observed (“α-observable”).

3 Some Open Problems and Research Direc-

tions

3.1 Models and Extrapolation Assumptions

CR estimation is in its essence an extrapolation problem: use data from capture pat-
terns in {0, 1}J \ {0} to estimate f(0|θ). Since 0 is unobservable by definition, the
way to project to this probability will be completely determined by the model f(·|θ);
this also means that truly non-parametric CR estimation is essentially impossible; see
discussion in Manrique-Vallier (2016). Conversely, the way in which the probability
f(0|θ) relates to the rest of f(x|θ), x 6= 0, can neither be learned from data nor tested.
The projection of the joint model to the unobservable part is related to the concept of
extrapolation distribution in the missing data literature (Hogan and Daniels, 2008).

Since statistical inference on the way in which observable patterns relate to the
unobserved is impossible, selecting an appropriate model or family of models should
be done in a way that best resembles the actual data generation process and with
understanding of the implied extrapolation assumption. An important example are
hierarchical log-linear models. As discussed in Section 2.2, log-linear models for J lists
require an assumption of no (J −1)th-order interaction in order to be identifiable from
data with capture patterns {0, 1}J \{0}. This condition itself defines the extrapolation
assumption (from which the estimator in (3) is derived). The question then becomes:
is this particular way of extrapolating reasonable for casualty estimation?

As explained in Sections 2.3, we believe that in most casualty estimation problems,
heterogeneity is the main driver of departures from the independence model and so,
with some exceptions, log-linear models are just an approximation to the true joint
distribution of data. Therefore, even if the models fit the observed data well, the
extrapolation assumption might not be appropriate for this problem. On the other
hand, models that directly represent plausible heterogeneity structures, like NPLCM,
might be more appropriate. Which models and extrapolation assumptions are better
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for different scenarios in casualty estimation is an open question that would benefit
from additional research.

3.2 Data-Based Stratification

Stratification is often used as a first approach to tackle heterogeneity (see Section 2.3).
The usual practice consists in using qualitative expert knowledge to find a partition of
the population that could result in homogeneous sub-populations, and estimate within
each of them separately. Oftentimes, after trying a stratification scheme, some strata
will still exhibit signs of residual heterogeneity. In these cases researchers sometimes
revise the stratification scheme, adjust, and try again. For example, in Peru (Ball
et al., 2003) researchers determined regional conflict dynamics and stratified accord-
ingly. Then, after noting that model fitting in some of the regions was poor, they
sub-divided them into smaller pieces forming a finer stratification scheme.

This iterative procedure seems natural and intuitive, but is statistically problem-
atic. Specifically, the process of looking at the results obtained under a stratification
scheme to modify it, is itself a data-based decision that is likely to alter the validity
of inferences—similar to the so-called p-hacking problem (Gelman and Loken, 2013).
Manrique-Vallier et al. (2019) noted this problem in their re-analysis of the Peru-
vian data. They addressed it using a partial blinding procedure: two of the authors
performed the calculations without sharing the results with the third, while the lat-
ter proposed sub-stratification schemes only based on external qualitative knowledge.
This procedure partially addressed the risk of cherrypicking results based on what the
researchers would want to see. However, the selection of which regions to sub-divide
was still based on data-based evaluations of model fitting.

A possible alternative is to formally incorporate the stratification process into the
modeling and estimation procedures. Let Y = {y1, y2, ..., yM} be the finest partition of
the population we are willing to consider, determined from subject matter knowledge.
Let us call these partitions atomic strata. Taking Y as the stratification scheme is
equivalent to fitting M models f(·|θy1), ..., f(·|θyM ) to each atomic stratum. On the
other extreme, we can think of unstratified estimation as making the parameters of
all M models equal, i.e. θy1 = θy1 = ... = θ. In between, we can represent different
stratification schemes as different agglomerations of atomic strata, where parameters
are equal. For example, if we wanted to create a stratum that combines strata 1, 2,
and 3, we would represent it by enforcing the restriction θy1 = θy2 = θy3 . Using this
idea we can think of performing simultaneous estimation of the stratification scheme
and CR parameters (including the population size) by specifying prior distributions
that put positive mass into relevant groupings of atomic strata by enforcing equality
on their parameters. This idea is similar to the method of Price et al. (2019) for
the automatic combination of categories in logistic regression. This construction can
also allow enforcing meaningful structures, like geographic or temporal contiguity by
appropriately allowing equality among neighboring atomic strata.
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3.3 Missing Data

As noted by Fienberg and Manrique-Vallier (2009), CR can be seen itself as a miss-
ing data problem. Indeed, many estimation methods are based on data- or sample-
augmentation schemes that represent unobserved individuals as missing records—see
e.g. Manrique-Vallier (2016). This makes it natural to combine CR with other forms
of missing data problems and methods.

A frequent scenario in casualty estimation is when data for stratification is missing
for some individuals. For example, in the study of the Peruvian conflict (Ball et al.,
2003; Manrique-Vallier et al., 2019), about 10% of the records missed perpetrator
attribution. As noted by Zwane and van der Heijden (2007)—who studied the problem
for the special case of variables completely missing in some of the lists—, in these cases
the common practices of ignoring incomplete covariates, creating a special category
out of them, or imputing “reasonable” values can be a source of either biases or too
optimistic precision.

Manrique-Vallier et al. (2019) proposed a framework for Bayesian stratified CR es-
timation with incomplete stratification information in one covariate. They combined it
with the model from Manrique-Vallier (2016) and used the resulting method to estimate
deaths in the Peruvian conflict. The method is based on using a data-augmentation
representation for both the unobserved individuals and the missing stratification which
is then estimated using Markov Chain Monte Carlo simulation. At its core this method
is based on a Missing at Random assumption (Little and Rubin, 2002) whereby the in-
formation used to infer the missing stratification is obtained from records with similar
capture patterns. A natural extension of this idea is to complement the information
from the capture patterns with other variables. For example, in Manrique-Vallier et al.
(2019) researchers had access to covariates that were not used in stratification (like
age) which might be related to the missing stratification labels and could be used to
better estimate them.

3.4 Data Copying Between Lists

An important exception to our belief of heterogeneity being the main driver of depen-
dence between lists in casualty estimation is the case of sharing or copying of records
between documentation projects. In these cases, in addition to gathering first-hand
information about casualties of a conflict, some projects directly incorporate data ob-
tained by other projects into their listings. In our experience this is not a prevalent
problem across the casualty estimation projects in which we have been involved. How-
ever, when it happens, its effect is noticeable. One example occurs in the conflict
in Syria, where the Human Rights Data Analysis Group (HRDAG) has longitudinal
access to lists put together by different projects. The databases are shared multiple
times over time, as they are updated when new deaths are known and when additional
information about previously reported deaths becomes available. In some cases, the
overlap between two lists increases substantially between updates, where the newly-
overlapping records are found not to be present in one of the databases in the previous
iteration, and the new records match exactly records in the other database. HRDAG,
in conversation with one of the groups, learned that they copy published records from
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the others. This is a reasonable strategy for a group trying to maintain a comprehensive
list, but it creates a strong positive dependence between the lists.

Copying of records between lists that also directly gather first-hand information is
problematic in CR because it superimposes and confounds two data generation pro-
cesses: the capture of individuals by documentation projects, and the relationship
between those projects. From these, only the former process is useful for inferring the
population size. Thus we need to somehow disentangle them. An ideal situation is
that projects record the source(s) of each record so that we can identify which records
have only been copied and remove them prior to statistical analysis. In the absence of
such information we may try to model the copying process. This strategy will likely
require external sources of information and/or strong and untestable assumptions to
overcome unidentifiability. One of such possible additional sources of information can
result from integrating the CR estimation and the record-linkage process.

3.5 Internal Duplication

Typical multi-list CR methods (like all the ones that have been used for casualty
estimation studies so far) only work with information about presence or absence in
lists, in the form of vectors in {0, 1}J \ {0}. These vectors are usually the result of
J-way record linkage among J lists, where individual lists are assumed to be free of
duplicated records. In fact, in most projects an important part of the data preparation
is making sure that the internal duplication within lists has been eliminated.

Internal duplication within lists carries plenty of useful information that can be lost
during the “cleanup” process. In the same way in which the presence of an individual in
more than one list is usually interpreted as an indication of a higher probability of be-
ing observed, repeated presence in the same list (or “duplication”) can also contribute
to the same conclusion. To take advantage of these data we need to create methods in
which the multivariate capture patterns are not simply strings of zeros or ones, but of
natural numbers, x ∈ {0, 1, 2...}J . A simple version of such a model, assuming inde-
pendence between two lists, has been proposed by Lerdsuwansri and Böhning (2018).
However the casualty estimation context is likely to require much more sophisticated
multi-list models that represent plausible data generation scenarios, and that can be
integrated with other sources of information. An additional level of complication comes
from the fact that, in practice, there will be uncertainty on which records are duplicates
within a single dataset, that is, the counts x ∈ {0, 1, 2...}J will be known with error
(see, e.g., Sadinle, 2014; Steorts et al., 2016).

3.6 Record Linkage Errors

The capture patterns xi ∈ {0, 1}J \ {0} are the essential input for all CR techniques.
To obtain these we need to identify individuals that appear in multiple lists by linking
their corresponding records. In the context of armed conflicts, witnesses or victims
of violence may report an event to different organizations at different points in time
and with different degrees of detail. Unfortunately, reporting or collecting unique
identifiers, such as national identification numbers, is rare in this context. This means
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that even the more basic question of how many unique casualties were reported to any
one group cannot be easily answered, as it is often difficult to determine which records
belong to the same individuals.

Probabilistic record linkage techniques (see, e.g., Fellegi and Sunter, 1969; Winkler,
1988; Jaro, 1989; Larsen and Rubin, 2001; Sadinle and Fienberg, 2013; Steorts et al.,
2016; Sadinle, 2017) take advantage of imperfect partial identifiers collected on the
individuals, such as names and demographic information, dates and locations of the
events. These pieces of information are usually subject to typographical and other
types of errors, which lead to uncertainty in the correct way of linking the records.
The result of the record linkage process will typically contain errors termed false links
and false non-links, that is, records that were incorrectly linked and records that were
incorrectly left unlinked, respectively. A false non-link can for example lead to a
true capture pattern (0, 0, 1, 1) being incorrectly registered as two capture patterns
(0, 0, 0, 1) and (0, 0, 1, 0); conversely, a false link can for example lead to two capture
patterns (0, 0, 0, 1) and (0, 0, 1, 0) being incorrectly counted as (0, 0, 1, 1). Similar errors
appear when record linkage techniques are used for duplicate detection within each list.

The effect of linkage errors is clearly seen in the Petersen estimator (2) in the case
of two lists. Between the lists, false links will lead to higher nAB and thereby lower
population size estimates, whereas false non-links will lead to lower nAB and higher
population size estimates. Within each list, false links will lead to lower nA and nB and
therefore lower population size estimates, whereas false non-links will lead to higher nA
and nB and therefore higher population size estimates. For multiple lists, the specific
impact of linkage errors will depend on the models being used.

Broadly speaking, the output of a linkage procedure can be seen as an estimator
for the underlying correct way of linking the records. As every estimation procedure,
the linkage is subject to sampling variability, and we are interested in “transferring”
this “linkage uncertainty” into the population size estimation, with the goal of having
final estimates that reflect the fact that the linkage is subject to error. Two strategies
come to mind: a joint modeling strategy for both the linkage and the population size
estimation, and a two-stage strategy where the output of probabilistic linkage is fed into
the population size estimation. The first approach has been undertaken by Liseo and
Tancredi (2011) and Tancredi and Liseo (2011), who created a joint Bayesian modeling
strategy that combines a model for record linkage with a model for population size
estimation; although their work focuses on the case of two lists, their strategy could in
principle be extended to more general models. The second approach was undertaken by
Sadinle (2018), who proposed a procedure called linkage-averaging, where the linkage
and the population size estimation can be carried out in two separate stages, while still
leading to proper Bayesian inferences under some conditions.

A characteristic of the joint modeling strategy is that the analyst will have to run
the record linkage and the CR model jointly for each different CR model, which can be
computationally intensive, whereas in the two-stage strategy the results from record
linkage can be reused with different CR models. Another characteristic of both of these
approaches is that their success is determined by the success of their record linkage and
CR components. For example, if the record linkage model over-links or under-links,
then the population size estimates will be lower or higher, respectively, with respect to
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what we would obtain under the correct linkage, regardless of whether one uses a joint
model or a two-stage approach. Similarly, if the model for population size estimation
is wrong, our estimates will be deficient regardless of whether one uses that model in a
joint model or in a two-stage approach. Further research should be devoted to better
understanding the properties of these strategies and to develop alternatives.

4 Final Comments

Our goal in this discussion was not to be exhaustive but rather to present some of
the challenges, approaches, and directions we are most familiar with. CR for casualty
estimation could benefit from developments in many other areas of statistics, such as
model selection in regression problems, post-selection inference, small area estimation,
and spatio-temporal modeling, just to name a few. Furthermore, CR techniques that
are developed for estimating animal abundance in ecology, for corrections to census
enumerations, or for disease prevalence estimation in epidemiology will also continue
to be potentially useful for casualty estimation.

CR for casualty estimation is an area of research posing several technical chal-
lenges that have traditionally been bypassed in applications via ad-hoc solutions. More
adequate solutions should account for the uncertainty in the the correct ways of mod-
eling, extrapolating, stratifying, handling missing data, and deduplicating and linking
records. Unfortunately, the flip side of better handling of these issues is that we will
necessarily obtain casualty estimates with much broader uncertainty intervals. This
can potentially mean that in certain situations the intervals will become too large to
be practically useful. Nevertheless, it is desirable to have estimation methodologies
that provide us with honest assessments of uncertainty and thereby avoid misleading
and overconfident results.
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