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Abstract

When analyzing longitudinal data we need to balance our understanding of individual

variability with the production of meaningful and interpretable summaries of overall pop-

ulation tendencies. This is especially true when those in the target population are known

to be heterogeneous in their progression over time due to unobserved individual traits.

Additional complications arise when the data are discrete and multivariate. I propose

a new family of models to analyze such data by combining features from a version of

the cross-sectional Grade of Membership Model (Woodbury et al., 1978; Erosheva et al.,

2007) and from the longitudinal Multivariate Latent Trajectory Model (Connor, 2006).

This new family of models works by considering individuals to be combinations of a small

number of “ideal” or “extreme” classes. By describing the ways each of these extreme

classes evolves over time we are able to describe distinct general tendencies. At the same

time, by considering individuals to be individual-level mixtures of these profiles, we are

able to handle complex forms of heterogeneity.

I apply my method to data from the National Long Term Care Survey (NLTCS), a

longitudinal survey with six completed waves aimed to assess the state and characteristics

of disability among U.S. citizens age 65 and above. I develop a full Bayesian specification

and estimation methods based on Markov Chain Monte Carlo sampling, as well as several

extensions to the basic methods to handle specific aspects of the NLTCS and to be able to

answer relevant questions about the differences between disability patterns across different

generations and the interplay between disability dynamics and survival times.
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Chapter 1

Introduction

In this thesis I propose models and estimation procedures to deal with discrete multivariate

longitudinal data obtained from a heterogeneous population. Data with these character-

istics is frequent in large scale longitudinal and panel surveys, designed to measure a

phenomenon that evolves over time. Techniques that characterize such processes have to

take into account this longitudinal nature, consisting of multiple sequential measures from

the same individuals. At the same time, when the population is known or suspected to be

heterogeneous, it is important to identify and model this individual variability. Moreover,

the characterization of this heterogeneity can be revealing in and of itself.

The specific methods proposed and developed here are motivated by the analysis of data

from the National Long Term Care Survey (NLTCS). The NLTCS is a longitudinal panel

survey instrument aimed to assess chronic disability among the elderly population in the

United States. Through its analysis, researchers seek to answer important questions re-

lated to the aging process and the prevalence of disability in the U.S.: How many elder

1
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Americans will live with disabilities? What is the of duration of disability episodes? What

is the age of onset of disability? Is it changing for younger generations? (see e.g. Connor

et al. 2006). Answers to these questions are of great importance in public policy design

due to, among other reasons, the increased public and private expenditure for disabled

people in contrast with their able peers (Manton et al., 1997).

Many of the relevant public policy questions for which the NLTCS can potentially provide

answers have to do with changes over time: changes during the life of an individual (“how

is this individual likely to age?”) or comparing people across different generations (“are

people from later generations acquiring disabilities in a different way different than people

born 20 years before?”). To answer these questions we need to look at the data longitudi-

nally, because the same individuals are measured at multiple points in time and because

the questions of interest involve individual disability profiles over time. In addition, several

studies (e.g. Connor 2006; Stallard 2005) have shown that elderly American people are a

heterogeneous population, meaning that not everyone could be expected to age the same

way. Thus models for longitudinal disability data need to be capable of representing such

heterogeneity.

1.1 Data: The National Long Term Care Survey

The National Long Term Care Survey (NLTCS) is a longitudinal panel survey designed

specifically to assess the state and progression of chronic disability among elderly popu-

lation in the United States (Corder and Manton, 1991). Its target population consists of

people aged 65 years and older that present functional limitations lasting or expected to

last 90 or more days (White, 2008). It was funded by the National Institute of Aging,
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designed and overseen by the Center for Demographic Studies at Duke University and

implemented by the U.S. Census Bureau.

The NLTCS consists of six waves conducted in 1982, 1984, 1989, 1994, 1999 and 2004.

Each wave consists of interviews to about 20,000 people, from which about 15,000 are

previously interviewed individuals and around 5,000 are new sampled subjects to replace

those who have died since the previous wave, except in the first wave (Clark, 1998). In

aggregate, a total of around 49,000 people have been screened in the survey between 1982

and 2004.

The sampling frame of the NLTCS is the Medicare file. Since 97% of U.S. seniors 65+

years old are registered in it, this list is believed to be a good representation of the

elderly population of the U.S. (Corder and Manton, 1991). Despite its census-like nature,

however, potential differences between the intended target population and the sampling

frame have led some researchers to propose to consider it only as representative of the

Medicare records (Cox, 2009).

The NLTCS was designed to be used as several cross-sectional samples, considering each

wave as a different sample from the target population at that time, and also as a longitu-

dinal sample, following individuals across different measurement waves.

The NLTCS approaches disability through the measurement of individuals’ capacity to

perform a set of “Activities of Daily Living” (ADL) such as eating, bathing or dressing and

“Instrumental Activities of Daily Living” (IADL) such as preparing meals or maintaining

finances. Broadly stated, ADLs seek to measure people’s ability to take care of themselves

at a fundamental level, while IADLs measure the ability of living independently within a

community (Connor, 2006). The survey instruments register these variables as a series of
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ADL (j) Abrv Description
1 EAT Eating
2 DRS Dressing
3 TLT Toileting
4 BED Getting in and out of bed
5 MOB Inside mobility
6 BTH Bathing

Table 1.1: The six ADLs used in the analysis.

answers to “triggering questions” that are then summarized into a set of binary responses

according to a set of decision rules. These binary responses indicate the presence or

absence of impairments to perform such activities. Table 1.1 shows the list of ADLs that

I have used in my own analyses.

Every individual sampled in the survey is first “screened” using a special questionnaire

aimed at quickly detecting if he or she is “chronically disabled” (presenting a disability in

some ADL or IADL lasting or expected to last 90 or more days). If screened-out, their

status is registered and they are rescreened in subsequent waves to assess if the disability

status has changed. If the individual is screened-in, he or she is then interviewed using a

“detailed questionnaire”. There are different detailed questionnaires for institutionalized

and community dweller individuals. After receiving a detailed questionnaire for the first

time, the subject is then eligible to receive detailed questionnaires in all subsequent waves

of the survey until death, to check if their functional status has changed (Clark, 1998).

Figure 1.1 shows a simplified flow diagram of the interview and questionnaire eligibility

process.

There are some exceptions to these rules. The 1994, 1999 and 2004 waves introduced

supplementary samples of people aged 95 years or older. This component, called the
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Disabled?

Disabled?Screener

Screener

Detailed

Detailed

yes

yes

noWave n

Wave n+1

Elegible

Elegible

no

Figure 1.1: Simplified diagram of NLTCS interview flow.

“oldest old sample” was introduced to have more precision in the estimates of this group

of people, since they tend to be scarce due to their high mortality rates (Stallard, 2005;

White, 2008). The other main exception is a group of non-disabled individuals that,

starting in 1994 were selected to receive the detailed interview, even though they would

have been rejected according to the initial screening process (Stallard, 2005).

Another thing to bear in mind is that IADL information was only registered through

the community detailed questionnaires. This means that IADL information is missing by

design for institutionalized people, even if they were screened-in. Additionally, during the

1982 wave, where was no detailed questionnaire for institutionalized people, even if they

screened-in.

There are some issues with the comparability between corresponding ADLs and IADLs

between different instruments (screener and detailed interviews), as the triggering ques-

tions in each instrument are different and in some cases are oriented to measure different

aspects of disability (Erosheva and White, 2009, 2010). One important aspect is that the
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screening instrument checks for at least one chronic limitation (lasting 90 or more days)

while the detailed interviews do not. These issues could bring problems since people that

were screened-in were automatically given the detailed forms in all subsequent waves and

therefore assessed in potentially different variables, with the same label. Although this

is an important issue that deserves further exploration, it falls beyond the scope of this

thesis.

The response rate of the survey is extremely high, on the order of 95% for all waves, both

because of the use of highly trained interviewers and the allowance of proxy respondents

(Connor, 2006). Although the reliability of proxy response is a source of legitimate concern,

I also consider this and related issues beyond the scope of the present work.

Although the NLTCS instruments try to track mortality, the reliability of these records

is dubious, due to the difficulty in obtaining this information by just attempting followup

contact. For this reason, researchers at Duke University undertook a special project to

link the NLTCS dataset with Medicare, Social Security and other administrative records

and complete and correct the information regarding the death of respondents (Connor,

2006). The result of this effort is a dataset, which I will call the Center for Medicare

and Medicaid Services datafile (CMS datafile), that registers the date of death or survival

status for each individual that ever entered the NLTCS up to the year 2006. This dataset,

however, only tracks respondents that were included in the NLTCS up to the year 1999.

The main data set I have used in all my analyses is the Duke Analytic File 2004, that

includes all subjects that were ever screened for the NLTCS, along with information about

all the (binary coded) ADLs (6) and IADLs (10) measured through the Community and

Institutional questionnaires, for each survey year from 1982 to 2004. This file, however
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does not include information about age or date of births of the individuals, information

that is indispensable in my modeling. I have obtained that information, together with

the date of death (if applicable) from the CMS data file, which has these two pieces of

information, updated until the year 2006, for individuals who entered the sample up to the

1999 wave. For this reason, the only information from the 2004 wave that I have included

in my analyses is that from individuals who were already included in the 1999 wave.

1.2 Notation and structure

In what follows I use the following notation and structure:

1. Subindexes: I consider indexed variables with several subindexes. When there is no

risk of ambiguity, I drop indices to refer to the whole vector, e.g. ξi = (ξi1, ..., ξiK).

When I want to be more specific about the component I am dropping I replace it by

an asterisk to mark its position (‘*’), e.g. ξi∗ = (ξi1, ..., ξiK).

2. Individuals: There are N subjects in the sample, indexed by i. In the NLTCS,

these individuals are the unique individuals that were registered at least once in the

sample. For the whole NLTCS sample, N ≈ 49, 000 individuals.

3. Measurements: There are a total number T of measurement events, in which

data are recorded from the individuals. I index these measurement events by the

letter t ∈ {1, ..., T}. Each individual can be potentially measured in any of these

measurement events, but is only actually measured in a subset Mi ⊂ {1, 2..., T} of

them. In the NLTCS the measurement events are the waves (T = 6) and each set Mi

represent the waves at which data from that particular individual i was recorded.



1.2. Notation and structure 8

4. Responses: For each individual i ∈ {1, ..., N}, at each measurement event t ∈ Mi

the sample registers J binary variables simultaneously. I index each of these J

responses by the letter j ∈ {1, ..., J}. In the NLTCS these binary variable are the

(binary) answers to the ADLs and IADLs. The realized measurement for individual

i and question j at measurement time t will be denoted by yijt ∈ {0, 1}.

5. Covariates: Each individual has an associate covariate vector Xi = (Xt
i∗, X

f
i ) that

can be further partitioned into a time dependent component, Xt
i∗ = (Xt

i1, ..., X
t
iT ),

and a fixed component, Xf
i . An example of a time dependent component is the age

at the time of measurement t ∈ {1..T}, Ageit. An example of a fixed covariate is the

date of birth of the individual, DOBi. The notation Xit = (Xt
it, X

f ) refers to the

vector that combines the fixed part and the time dependent part at measurement

time t.

6. Sets of indexes: I frequently need to select sets of indexes to iterate over indexed

variables or other entities. To denote these sets I use the letter Ξ(.)
. , where the

subindexes are the indexes that were used to determine the grouping and the su-

perindexes, the free indexes. For instance Ξ(jt)
ij = {(i, j) : some condition involving j and t}.

In some cases, when no ambiguity arises, I drop these sub- and super-indexes.

To simplify notation, I use the symbol p(·) to denote either the probability density function

or the probability mass function of the argument, as needed.

As an example, Table 1.2 shows an schematic representation of the information corre-

sponding to a single (fictional) individual.
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Wave (t)
1 2 3 4 5 6

Year 1982 1984 1989 1994 1999 2004

ADL (j)

EAT 0 0 0 0 1 1
DRS 0 1 0 0 0 1
TLT 0 0 0 1 1 1
BED 1 1 0 1 1 1
MOB 0 0 0 0 1 1
BTH 0 0 0 0 1 1

Other

Age: 66 69 74 79 84 89
DOB: 1916
DOD: 2005

Sex: Female

Table 1.2: Example of data structure for a single fictional individual. The individual itself
is indexed by the letter i ∈ {1...N}

1.3 Modeling Functional Disability in the NLTCS: An Overview

The NLTCS is a rich source of information for questions about aging and disability in

the United States and as such has been analyzed from different perspectives a number of

times.

From a modeling perspective, the NLTCS functional disability data poses serious chal-

lenges to data analysts. First, responses to individual ADL and IADL disability questions

are binary categorical variables and the resulting response patterns form large and ex-

tremely sparse contingency tables (e.g. the subset of 6 ADLs and 10 IADL analyzed by

Erosheva et al. (2007) forms a 16 dimensional cross classification contingecy table, with

216 = 65, 536 unique pattern responses, most of them with zero counts). If we consider

the whole vector of responses with its six waves, the dimensionality can grow to 26×6

unique patterns, just considering the ADLs, and 296 including IADLs. Second, if we want

to estimate changes in time, we must find a way to incorporate the longitudinal nature
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of the data into the analysis in a way that allows meaningful interpretation. Third, the

NLTCS has a complex design and it is not clear how to incorporate the survey design and

sampling weights into complex longitudinal analyses.

Manton and collaborators at the Center for Demographic Studies at Duke University used

the NLTCS data to estimate the progression of the prevalence of disabilities in the United

States, using successive NLTCS waves (Manton et al., 1997, 2006; Manton, 2008). They

found a persistent decline of the disability from wave to wave. They compared uncorrelated

cross sectional estimates of prevalence of ADLs and IADLs, using survey weights to adjust

for the unequal sampling probabilities. Although they explicitly discuss the importance

of the NLTCS as a source of longitudinal data they do not use the information involving

the same individuals over time in their analyses.

Many of the efforts for the analysis of the functional disability data from the NLTCS have

been directed to devise effective and meaningful ways of performing dimension reduction

into the space of possible disability response patterns using a latent structure approach.

In the literature we can distinguish two basic approaches using the latent structure idea.

The first one is based on the idea of finding lower dimensional latent representations of

underlying disability states for which the different patterns of response to ADLs and AIDLs

can be taken as observable manifestations.

Thus far, the preferred method for this first approach has been the Grade of Membership

(GoM) model (Woodbury et al., 1978; Manton et al., 1994; Erosheva, 2002; Erosheva et al.,

2007). In the GoM model, dimensionality reduction is achieved assuming the existence

of ideal pure types or “extreme profiles” and further assuming that the multivariate re-

sponse of each individual can be modeled as convex combinations, with individual weights,
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of those extreme profiles. The extreme profiles are interpreted as reference types of disabil-

ity states, where each individual could be situated at a given time. In this way, extreme

profiles represent states whose convex combinations any person could potentially transit

through the course of their life. This perspective—although without considering the time

dimension—was first introduced into the analysis of disability by Manton and his collab-

orators at Duke University, see e.g., Manton et al. (1994). Erosheva (2002) and Erosheva

et al. (2007) formulate the model in a Bayesian framework using an equivalent constrained

latent class representation for the model and applied it to NLTCS pooled data from dif-

ferent waves. All these analyses were based on pooled cross-sectional data, without taking

into account the full longitudinal nature of the actual NLTCS data.

One use of the membership scores, mainly employed by Manton and collaborators (e.g.

Manton et al. 1994, 2004, 1992, 2008; Stallard 2005), treats them as a set of covariates,

expressing the health status of an individual, with different purposes. In this way one can

take advantage of a low-dimensional representation in order to analyze the relationship

between disability and other phenomena.

White (2008) and Stallard (2005) extend this strategy of latent modeling (i.e. dimension-

ality reduction in the space of ADLs and IADLs response patterns) to the longitudinal

setting. White (2008) formulates extensions to the latent class transition model defin-

ing a number of exclusive latent classes, representing states of disability, and estimating

transition rules governing how individuals transit across classes from one measurement

to the next. In this formulation, each individual at a given time is supposed to belong

exclusively to a single class. White (2008) extends this idea to accommodate the NLTCS

rolling enrollment. His approach deals with this issue essentially by stratifying the sample

according to enrollment characteristics.
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Stallard (2005) used a similar idea, but defined a set of latent non-exclusive ideal classes

(in a GoM style) and transition rules depending on age (not wave), to model the transit

over time of individuals within the latent unit simplex of group memberships. Stallard’s

approach uses Markov transition matrices, effectively treating GoM membership scores as

probabilities, although interpreting them in the GoM sense.

A second approach to latent structure modeling incorporates the heterogeneity of the

population by assuming the existence of different classes of individuals, using the latent

structure to differentiate them. In this way, the latent structure does not model states of

disability, as in the previous approaches, but types of people. This was the approach taken

by Connor (2006), who defined latent classes of people and within each class, models the

probability of acquiring a disability as a continuous monotonic function of age. In this

approach, each individual is assumed to completely belong to one and only one latent

class, permanently, and the analyst’s task is then to characterize each class and to identify

membership probabilities for the individuals.

In the next subsections I will present the Grade of Membership and the Multivariate

Latent Trajectory models in more detail.

1.3.1 Mixed membership models. The Grade of Membership Model

Grade of Membership models (Woodbury et al., 1978) are well suited for large sparse

contingency tables. In broad terms, they work by assuming a latent classification of the

outcomes based on the idea of “partial membership”: if we assume the existence of a

small number of “typical cases” or “extreme profiles”, then we can use them to classify

the individuals in the sample according to their relative distance to the extremes. We allow
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individuals to share characteristics from each of the extremes simultaneously in different

degrees, according to their position with respect to the extremes. Thus we say that the

individuals “partially belong” to the profiles.

Besides applications to the study of disability (Manton et al., 1991, 1993, 1994, 2004,

2008; Stallard, 2005; Erosheva, 2002; Erosheva et al., 2007), GoM and related models

have been used in applications such as network analysis (Airoldi et al., 2008), electoral

preferences analysis (Gormley, 2006), estimation of judgement accuracy (Cooil and Varki,

2003), estimation of population sizes (Manrique-Vallier and Fienberg, 2008), and text

classification (Erosheva et al., 2004; Blei et al., 2003; Blei and Lafferty, 2007).

To construct the GoM model we start by assuming the existence of a specific number,

K, of “extreme classes” or “pure types”. Suppose that there are N individuals on the

population. For the ith individual, for i ∈ {1, . . . , N}, we associate a J-dimensional binary

vector of manifest variables yi∗ = (yi1, ...yiJ). For any individual that is a full member

of the kth extreme class (i.e. an “ideal” individual of the kth class), we assume that the

probability of a positive response in the jth entry of the manifest variables vector is the

same, i.e., Pr(Yij = 1|ith individual in kth class) = λjk.

We associate each individual with its own K-dimensional “membership vector”, gi∗ =

(gi1, gi2, ..., giK), representing how much of a member of each class this particular individ-

ual. Membership scores are restricted so that gik > 0 and
∑K

k=1 gik = 1. We will call

this geometric place the “K − 1 dimensional unit simplex” and denote it by the symbol

∆K−1 or ∆, if no ambiguity arises. We introduce the idea of “partial membership” by set-

ting the distribution of each manifest variable given the membership vector as the convex
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combination,

p(yij |gi∗) =
K∑
k=1

gikλ
yij
jk (1− λjk)1−yij .

We further assume that the item responses j are conditionally independent given mem-

bership vectors. This condition, sometimes referred as latent conditional independence or

local independence (Holland and Rosenbaum, 1986; Sijtsma and Junker, 2006), expresses

the idea that the membership vector g completely explains the dependence structure be-

tween the J binary manifest variables. By making this assumption, we can construct the

conditional joint distribution of responses

p(yi∗|gi∗) =
J∏
j=1

K∑
k=1

gikλ
yij
jk (1− λjk)1−yij .

Further assuming that the individuals are randomly sampled from the population we

finally get,

p(y∗∗|g∗∗) =
N∏
i=1

J∏
j=1

K∑
k=1

gikλ
yij
jk (1− λjk)1−yij . (1.1)

It is worth noting that the GoM model can be understood as a generalization of a more

traditional latent class model (LCM). See, Goodman (1974) for a description of these.

The expression in Equation (1.1) can also be used to represent the likelihood conditional

(on class membership) of an LCM by restricting the vector gi∗ so that gik = 1 for some

k ∈ {1...K} and gik′ = 0 for every k′ 6= k (Erosheva, 2005). This is, every individual is a

full member of a single class.

Erosheva (2002) and Erosheva et al. (2007) formulate the GoM model in a Bayesian frame-

work and apply it to pooled NLTCS data. Following an observation by Haberman (1995),
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Erosheva (2002) shows that, even though GoM models can be thought as a generalization

of a LCM, GoM models themselves can be also characterized as a special subclass of some

restricted LCM models. This somewhat surprising observation provided the basis for the

estimation methods in Erosheva (2002) and Erosheva et al. (2007).

Consider the membership scores gi as i.i.d. samples from a common population-level

distribution, gi
iid∼ G. Under that assumption,

p(yi) =
∫

∆

J∏
j=1

K∑
k=1

gkλ
yij
jk (1− λjk)1−yijG(dg)

=
∑
z∈Z

πzλ
yij
jk (1− λjk)1−yij , (1.2)

where

Z ={1, 2, ...,K}J

πz =EG

 J∏
j=1

K∏
k=1

g
I(zj=k)
k

 (1.3)

The expression in Equation (1.2) is typical of a discrete mixture model. What makes the

GoM something other than just a LCM with a potentially huge number of components

(#Z = KJ) is that (a) πz is invariant to permutations of the components of z, giving an

effective number of just (K + J − 1)!/(J !(K − 1)!) − 1 different values of π to estimate,

and (b) the π values are constrained to be the expected values given by Equation (1.3)

(Haberman, 1995).

In the rest of this thesis I will make widespread use of this representation.

All the applications of the GoM to the NLTCS have described the extreme profiles as
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(extreme) “states of disability” and the membership scores as the way each individual at

a given time is situated within the convex hull defined by the extreme profiles (Erosheva

et al., 2002). This defines the particular disability status of that individual.

1.3.2 Modeling Longitudinal Patterns - Latent Trajectory Models

Latent trajectory models (Nagin, 1999) have become increasingly popular in criminology

and other social sciences as a method to analyze heterogeneous longitudinal data where

homogeneous sub populations of individuals are suspected to exist (see e.g. Kreuter and

Muthén 2008; Nagin and Land 1993).

Different from latent transition models (e.g. White 2008; Stallard 2005), trajectory models

seek to represent the whole progression (or trajectory) of the response over time. To this

end, we introduce the concept of “trajectories”: parametric functions dependent on time

that describe the evolution of the phenomenon under consideration. Connor (2006) extends

the latent trajectory class of models to binary multivariate longitudinal data to analyze

the NLTCS.

The construction of Connor’s Multivariate Latent Trajectory model (MVLT model) is

similar to the specification of other Latent Class or discrete mixture models. Assume

that the population can be partitioned into K unobserved exclusive classes. Then, as-

sume that individuals that belong to those classes can be considered homogeneous with

respect to the characteristics to be modeled. In the present instance, those characteris-

tics are the trajectories of the probability of a positive response on each of the response

variables. Connor (2006) uses a logit link function to model the frailty trajectory within

each class as a monotone function of age. Call zi∗ = (zi1, ..., ziK) the indicator vector
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for the individual indexed by i. An indicator vector for individual i is a K-dimensional

vector zi∗ = (zi1, ...ziK) such that zik = 1 and zik′ = 0 for k′ 6= k if and only if the

individual indexed by i belongs to class k ∈ {1, 2, ...,K}. Then, specify the trajectory of

the probability of acquiring a disability in ADL-j, for members of the class k as a function

of Age,

λjk(Ageit) = Pr(Yijt = 1|zik = 1, Ageit)

= logit−1(β0jk + β1jk ·Ageit) (1.4)

so that

Pr(Yijt = yijt|zik = 1, Ageit) = fθj (yijt|Ageit, zi)

= λjk(Ageit)yijt (1− λjk(Ageit))1−yijt

Then, assuming that the probability of any individual of being a member of class k is πk,

i.e. Pr(zik = 1) = πk, and assuming conditional independence between the responses to

different questions and measurement events given class membership, we can construct the

joint distribution of the responses as

Pr(Yi = yi|Agei) =
K∑
k=1

πk

J∏
j=1

T∏
t=1

fθjk(yijt|Ageit).

Finally, assuming random sampling, the joint probability model becomes,

Pr(Y = y|Age) =
N∏
i=1

K∑
k=1

πk

J∏
j=1

T∏
t=1

fθjk(yijt|Ageit) (1.5)



1.4. Overview of the thesis 18

Connor (2006) applies these models to the NLTCS data in order to estimate the trajectories

of the probability of acquiring disabilities as a function of personal time or age. The

latent clustering framework allows some form of heterogeneity modeling, assuming that

there are exactly K different trajectories that each individual could in principle follow,

and estimating the proportion of the population that belongs to each of these classes, πk.

1.4 Overview of the thesis

This thesis is organized around the problem of modeling the NLTCS data by combining

the ideas of longitudinal trajectories and mixed membership classification. Chapter 2

introduces and develops what I call the Basic Trajectory Grade of Membership model,

a model that describes typical trajectories over time and handles heterogeneity of the

population using a GoM-like approach. I specialize the model to handle the NLTCS data

and, in Chapter 3 I apply it to the modeling of disability.

The next four chapters describe extensions of the Basic model aimed to represent more

subtle aspects of the NLTCS, and report on their application to the real data. Chapter 4

extends the Basic model to detect changes in the ways of aging across birth cohorts. Chap-

ter 6 introduces an extension that seeks to simultaneously model individuals’ disability

and survival outcomes, to investigate the interplay between disability and survival and to

improve the general quality of the estimates, allowing the use of disability and survival

data to estimate a common pool of parameters. Chapter 5 and 7 report on the application

of these two extensions to the NLTCS data.

Chapter 8 recapitulates the contributions made by this thesis and proposes a program for
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future research.



Chapter 2

Basic Grade of Membership

Trajectory Model

In this chapter I introduce a new longitudinal model which aims to characterize the joint

evolution of the probabilities of a set of binary responses as a function of time in presence

of individual-level heterogeneity. In the application to the study of disability using the

NLTCS data, my aim is to model the evolution of the probability of acquiring specific

disabilities as a function of personal time (time in the system or age).

The modeling approach I take in this chapter is based on the concept of Latent Trajectory

(see Connor 2006). I model the evolution of the underlying probability of a positive

response to each binary variable by determining underlying functions of time that govern

those probabilities. At the same time I handle the heterogeneity present in the population

in a flexible and interpretable way.

20
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As several authors have noted, latent trajectory models, such as the ones proposed in

Nagin (1999) and Connor (2006), assume the existence of latent homogeneous popula-

tions to which potentially no individuals actually belong (see e.g., Kreuter and Muthén

(2008)). Even under a non-committed interpretation, understanding these models more

as an approximation device to the true underlying distribution, than as the discovery of

“true” latent populations, we still have the problem of attributing all the variability on

the actual individual trajectories to random fluctuations within a class, disregarding the

fact that each class might be just too broad a description for each individual.

One possible solution to this situation, within the Latent Trajectory framework, is to

increase the number of latent classes, making enough room for more variability attributable

to true underlying differences across individuals. This solution, however, has the problem

of making the models more complex, sometimes by introducing new and only slightly

different classes to account for observable differences.

My proposed solution takes a different approach. I handle heterogeneity by using the

Grade of Membership model ideas, considering each multivariate trajectory as a simulta-

neous combination of a number, K, of “extreme profiles” or “pure types”. In this way,

similar to Connor (2006), these models construct a clustering of individuals within the

population of interest and describe their prototypical multivariate trajectories over time,

but borrowing the GoM ideas, they regard these trajectories as ideal cases and assume a

soft clustering over the population of interest, where each individual is allowed to belong

to more than one extreme profiles simultaneously, in different degrees.

It is important to distinguish this approach from other longitudinal applications of latent

class or GoM models. In other applications to the study of disability, such as those in
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Stallard (2005) or White (2008), the (soft) group membership involves states (or “fuzzy

states” in the GoM variants) that change over time with the intention of estimate transition

from one point in time to another. In this setup I am regarding the group membership

of each individual as fixed over time. In this sense, my approach attempts to characterize

the population by describing ideal reference types of people.

2.1 General Formulation

Similar to the construction of the GoM model (see Section 1.3.1), I start assuming the

existence of a small number, K, of extreme profiles or ideal types of individuals and,

for these ideal types, model the evolution of the marginal distribution of each response

variable, yij∗, as a function of some individual time-dependent covariates, Xit. We will

call the expected values of these functions “extreme trajectories”, λjk(Xit).

Each real (as opposed to ideal) individual will be considered as a unique mixture of the

K extreme profiles, using individual weights arranged on a “membership vector”, gi∗ =

(gi1..., giK) (gik > 0,
∑

k gik = 1). I will consider the membership vector as a characteristic

of the individual that is fixed for each individual, but unknown. The interpretation for

these weights, gik, is that they represent the “degree of membership” of individual i in class

K. Ideal individuals will be characterized by a membership vector where the component

corresponding to the profile where they (exclusively) belong has a value gik = 1, and the

rest of entries, zeroes. For instance, an individual with membership vector gi = (0, 1, 0, 0)

belongs exclusively to the extreme profile k = 2.

In this way, the distribution for response component j, for extreme profile k can be written
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as:

Pr (Yijt = yijt|Gik = 1, Xi) = fθj|k (yijt | Xit)

so that

λjk(x) = E[fθj|k (Yijt | x)].

Using the membership vectors, we will model the corresponding trajectory for a generic,

non-ideal individual i, with membership vector Gi∗ = (gi1, ..., giK) as the convex combi-

nation,

Pr (Yijt = yijt |Gi∗ = (gi1, ..., giK), Xi∗ ) =
K∑
k=1

gikfθj|k(yijt|Xit) (2.1)

Next, we will introduce a local independence assumption: for a single individual, condi-

tional on the covariate Xi and its membership vector, gi∗, the J responses at each of the T

measurement times are independent of each other. By this assumption we are effectively

using the membership vector and the covariates to decouple the dependence structure

present in the components of the response:

Pr (Yi∗∗ = yi∗∗ |Gi∗ = (gi1, ..., giK), Xit ) =
J∏
j=1

T∏
t=1

K∑
k=1

gikfθj|k(yijt|Xit) (2.2)

By assuming that each individual has been randomly sampled from the population we

finally get the joint model, conditional on g and X,

Pr (Y∗∗∗ = y∗∗∗ |g∗∗, X∗∗ ) =
N∏
i=1

J∏
j=1

T∏
t=1

K∑
k=1

gikfθj|k(yijl|Xit) (2.3)

If we assume the membership vectors are i.i.d. samples from a common distribution with
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support in ∆K−1, say Gα, we can finally get the unconditional model,

Pr (Y = y|X) =
N∏
i=1

∫
∆

J∏
j=1

T∏
t=1

K∑
k=1

gkfθj|k(yijl|Xit)G(dg) (2.4)

We can gain further insight on this formulation through the application of the Haberman-

Erosheva constrained LCM equivalence (see Section 1.3.1). Applying it we get

Pr (Y = y|X) =
N∏
i=1

∑
z∈Z

πz

J∏
j=1

T∏
t=1

fθj|k(yijl|Xit)

where

Z = {1, 2, ...,K}J×T

πz = EG

 J∏
j=1

T∏
t=1

K∏
k=1

g
I(zjt=k)
k

 for z ∈ Z (2.5)

This representation shows a direct connection with the formulation in Connor (2006),

(see Section 1.3.2). The biggest difference between these two formulations is that instead

of having K unconstrained profile weights as in Connor (2006), we have KJ×T of them,

strongly constrained by the moments formulation implicit in Equation (2.5) (see Sec-

tion 1.3.1 for further details). This fact will allow us model more complex data structures

with just a few extreme profiles, at the price of having to estimate the partial membership

structure.

Our formulation also suggests that we can perform inferences based on the augmented-data
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likelihood

p (y, z |, X, θ, g ) =
N∏
i=1

J∏
j=1

T∏
t=1

K∏
k=1

[
gikfθj|k(yijl|Xit)

]I(zijt=k)
(2.6)

through the use of a variants of the data augmentation algorithm proposed in Erosheva

(2002) and Erosheva et al. (2007).

2.1.1 What To Do With The Missing Values?

The generic likelihood of the Basic model in Equation (2.6) is assuming explicitly that

the vector yi∗∗ is rectangular, with j ranging from 1 to J , and t from 1 to T for every

single individual i = 1...N . In reality however, for some individuals one or many of the

measurements are not present. Reasons for this include attrition, either due to death or

other reasons, being ineligible in some of the first waves, but not in later ones, according

to the sample design; and late entry, in rolling enrollment panel designs.

In the case of the NLTCS, ineligibility in some early waves is a major source of lack of

rectangularity of the response: individuals have to be older than 65 to qualify and that

requirement might not be met until late waves, when they are incorporated to make up for

those who have died. The second and most important cause of missing measurements is

death (Clark, 1998; White, 2008). Distinguishing death from other causes of missingness

can be critical, since death is very likely to be highly correlated with the outcome of

interest.

While there are individuals who have missing measurements in the middle of the mea-

surement sequence, for instance, entered in wave 2, skipped wave 3, and have continuous
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measurements until wave 6, this occurrence is quite infrequent (White, 2008).

For the reminder of this chapter I rely on the strong assumption that the missing mea-

surements are Missing at Random (MAR) (Rubin, 1976). In essence, the MAR hypothesis

states that the reason why a measurement is missing is not dependent on the outcome

that we are trying to model nor on the parameters of that model. Under these conditions,

inferences based on posterior distributions given the observed outcomes, completely ignor-

ing the missing data, will lead to the same conclusions that would have been obtained had

we explicitly modeled the missing data and averaged it out (Rubin, 1976; Gelman et al.,

2004).

While the MAR assumption might be reasonable for the missingness due to non-eligibility,

given that we are already conditioning on its primary cause, the age of the subjects, it is

highly unlikely that this is the case for the missingness due to the subjects’ death. We

will return to this point and analyze the consequences of this assumption by addressing it

explicitly in Chapter 6.

Under the MAR hypothesis, the estimates that we would have obtained by modeling

the missing data mechanism (essentially, averaging the non-observed values according to

the model and conditioning on the data and observed pattern of missingness), will be

equivalent to those obtained by replacing the augmented data likelihood in Equation (2.6)

by

p (y, z |, X, θ, g ) =
N∏
i=1

J∏
j=1

∏
t∈Mi

K∏
k=1

[
gikfθj|k(yijl|Xit)

]I(zijt=k)
(2.7)

This is, by replacing the individual product over all waves,
∏T
t=1 ·, by the product over all



2.2. Continuous Trajectories GoM Model 27

the waves where the individual was present,
∏
t∈Mi

·.

2.2 Continuous Trajectories GoM Model

The choice of trajectory functions λjk(·) must be application-specific, as it will encode

assumptions about the nature of the underlying process, expressed as the realizations of

the response variables. For the application to the NLTCS, following Connor (2006), I will

use the s-shaped monotonic functions

λj|k(Xit) =
exp(β0jk + β1jkAgeit)

1 + exp(β0jk + β1jkAgeit)
(2.8)

=logit−1 (β0jk + β1jkAgeit) (2.9)

which will lead to the conditional distribution

fθj|k(yijt|Xi∗) = Bernoulli
(
yijt|λj|k(Xit)

)
(2.10)

= λj|k(Ageit)
yijt
(
1− λj|k(Ageit)

)1−yijt , (2.11)

where Ageit is the age of the ith individual at measurement time t. This specification has

the advantage of being relatively simple, with just 2×J parameters per extreme profile and

of representing the intuitively sound notion that the underlying probability of disability is

a monotonic (increasing) function of age. Other specifications are certainly possible and I

will present an alternative one in Section 2.3 of this Chapter.

Similar to Erosheva (2002) and Airoldi et al. (2008), I take the common distribution of
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the N membership vectors gi, Gα, as

gi∗|α
iid∼ Dirichlet(α).

where α = (α1, α2, ..., αK) with αk > 0 for all k = 1, ...,K and

p(g|α) =
Γ
(∑K

k=1 αk

)
∏K
k=1 Γ(αk)

K∏
k=1

gαk−1
k · I(g ∈ ∆K−1)

The Dirichlet distribution in this setting has some good properties. In the first place, it is

conjugate to the multinomial distribution, facilitating a great deal the computations using

Gibbs samplers; second, adopting the re-parametrization α = (α0 · ξ1, ..., α0 · ξK) with

α0 > 0, ξk > 0 and
∑

k ξk = 1 we can interpret the vector ξ as the average proportion of

the population in the k-th extreme profile and, α0 as a parameter governing the spread of

the distribution: as α0 approaches 0, the samples from Gα are more and more concentrated

on the vertices of ∆K−1 and; as α0 increases they are more concentrated near the average,

ξ.

As Erosheva et al. (2007) and Airoldi et al. (2007) discuss, a priori setting the parameters

α for the Dirichlet distribution might be too strong an assumption to do realistic modeling.

I will try to estimate these parameters specifying hyper-priors and computing posterior

distributions. For this purpose I use hyper priors for α0 and ξ similar to the ones in

Erosheva (2002) and Erosheva et al. (2007):

α0 ∼ Gamma(τ, η)

ξ ∼ Dirichlet(1K) (Uniform over ∆K−1).
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This specification takes advantage of the interpretation of the parameters α0 and ξ, by

considering them independent characteristics that we can model separately. For the same

reason I will assume that p(α0, ξ) = p(α)p(ξ).

For the parameters that characterize the trajectories, β0 and β1 I have chose the priors

β0jk
iid∼ N(µ0, σ

2
0) and β1jk

iid∼ N(µ1, σ
2
1),

for all j = 1, ..., J and k = 1, ...,K, with β0 independent from β1. This form of priors can

in principle be set to be noninformative, by apriori specifying high variances. I have also

assumed β apriori independent of α.

2.2.1 Estimation via Markov Chain Monte Carlo

Under the specification of extreme trajectories and priors outlined in this section, and

following the augmented data representation in Equation (2.7), the joint posterior distri-

bution of parameters and augmented data is

p(α, β, g|y, z, Age) ∝p(β)p(α)

(
N∏
i=1

p (gi∗|α)

)

×
N∏
i=1

J∏
j=1

∏
t∈Mi

K∏
k=1

(
gik

exp(yijtβ0jk + yijtβ1jkAgeit)
1 + exp(β0jk + β1jkAgeit)

)I(zijt=k)

,
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with p(α) = p(α0) · p(ξ) and

p(gi∗|α) = Dirichlet(gi∗|α1, α2, ..., αk),

p(α0) = Gamma(α0|τ, η),

p(ξ) = Dirichlet
(
ξ|1K

)
(Uniform on the ∆K−1),

and α0 =
∑

k αk and ξ = (ξ1, ξ2, ..., ξK) with αk = α0 · ξk. Parameters τ and η are shape

and inverse scale parameters, respectively.

Specifying an MCMC algorithm to obtain approximate realizations from this posterior

using the Gibbs sampling algorithm (Geman and Geman, 1984; Casella and George, 1992)

is just matter of obtaining the full conditional distributions for each parameter and aug-

mented data (for data augmentation algorithm see Tanner 1996; Marin and Robert 2007;

Robert and Casella 2004). Unfortunately, many of the resulting full conditional distribu-

tions have non standard forms and therefore more sophisticated approaches are needed.

The basic structure that we will use is the block-metropolis (Chib, 2004), “Metropolis-

Hastings within Gibbs” (Gamerman, 1997) or “Hybrid Gibbs-Metropolis” (Robert and

Casella, 2004). This algorithm consists in dividing the multivariate parameter vector into

fixed multivariate or univariate blocks and proceed as in the case of the Gibbs algorithm:

sequentially sampling from the joint distribution of each of these blocks conditional on the

current values of the other parameters. If any of those blocks, say x, happens to have a

non-standard distribution, we insert a Metropolis-Hastings step:

1. Conditional on the current values of all variables, obtain a proposal value x∗ from a

fixed distribution that is allowed to depend on the current value of all parameters,

including x, q(x∗|x, ...).
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2. Compute

r = min

{
p(x∗|...)
p(x|...)︸ ︷︷ ︸
rM

× q(x|x
∗, ...)

q(x∗|x, ...)︸ ︷︷ ︸
rH

, 1

}
.

The second part of the ratio, rH , compensates for the asymmetry of the pro-

posal distribution. When the proposal distribution is symmetric (i.e. q(x|x∗, ...) =

q(x∗|x, ...)), it cancels out leaving only the rM component. In that case we call this

a “Metropolis step”.

3. Update the chain, from step m to step m+ 1 according to :

x(m+1) =


x∗ with probability r

x(m) with probability 1− r

This is the standard Metropolis-Hastings algorithm, but where we are just applying it

into a single step for sampling from the difficult full conditional distribution p(x|...). The

important thing to note is that the proposal and rejection step is just performed once

per updating. Standard results (Gamerman, 1997; Marin and Robert, 2007; Robert and

Casella, 2004; Robert, 2004) guarantee that this chain converges to the desired stationary

distribution. While certainly other more sophisticated approaches are possible, and I have

indeed tried a number of them, like the adaptive rejection Metropolis-Hastings (Gilks and

Best, 1992) or the multiple-try Metropolis-Hastings (Liu, 1999), the simple application

of MH steps described below outperforms these variants because of their relative low

computational cost.

Now we can describe the algorithm step by step.

1. Sampling from z (imputation) For every i ∈ {1 . . . N}, j ∈ {1 . . . J} and t ∈Mi,
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sample

zijt|... ∼Discrete(p1, p2, ..., pK)

with

pk ∝gik
exp(yijtβ0jk + yijtβ1jkAgeit)

1 + exp(β0jk + β1jkAgeit)

for all k ∈ {1, . . . ,K}.

2. Sampling from (β0jk, β1jk): The full joint conditional distribution of (β0jk, β1jk)

is

p (β0jk, β1jk|...) ∝ p(β0jk, β1jk)×
∏
i,t

f(yijt|β0jk|, β1jk, Ageit)I(zijt=k)

∝ p(β0jk, β1jk)×
∏
i,j

[
exp [(β0jk + β0jkAgeit) yijt]
1 + exp (β0jk + β0jkAgeit)

]I(zijt=t)

∝

∏
jt

[1 + exp (β0jk + β0jkAgeit)]
I(zijt=k)

−1

× exp
[
−
β0jk

2

2σ0
2

+ β0jk

µ0

σ0
+
∑
ij

I(zijt = k)yijt


−
β1jk

2

2σ1
2

+ β1jk

µ1

σ1
+
∑
ij

I(zijt = k)Ageityijt

].
This expression can be written in a more compact form if we define the set of indexes
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Ξ = Ξ(it)
jk = {(i, t) : zijt = k}. Then the previous expression becomes

p (β0jk, β1jk|...)

∝
exp

[
−β0jk

2

2σ0
2 + β0jk

(
µ0

σ0
+
∑

Ξ yijt

)
− β1jk

2

2σ1
2 + β1jk

(
µ1

σ1
+
∑

ΞAgeityijt

)]
∏
Ξ

[1 + exp (β0jk + β0jkAgeit)]

This distribution does not have a recognizable form. Thus we use a random walk

Metropolis step:

(a) Proposal step: Sample the proposal values

β∗0jk ∼ N(β0jk, σ
2
β0) and β∗1jk ∼ N(β1jk, σ

2
β1)

where the values σ2
β0 and σ2

β1 are tuning parameters that we have to calibrate to

achieve a good balance between acceptance of proposed values and exploration

of the support of the target distribution (Robert and Casella, 2004). Note that

this proposal is symmetric, so we just need to add a Metropolis step.

(b) Acceptance step: compute

rM =
p(β∗0jk, β

∗
1jk|...)

p(β0jk, β1jk|...)

=
∏
Ξ

 1 + exp [β0jk + β0jkAgeit]

1 + exp
[
β∗0jk + β∗0jkAgeit

]


× exp

[
−
β∗20jk − β2

0jk

2σ2
0

+
(
β∗0jk − β0jk

)(µ0

σ0
+
∑

Ξ
yijt

)]

× exp

[
−
β∗21jk − β2

1jk

2σ2
1

+
(
β∗1jk − β1jk

)(µ1

σ1
+
∑

Ξ
yijtAgeit

)]
(2.12)



2.2. Continuous Trajectories GoM Model 34

and make

(β0jk, β1jk)(m+1) =

 (β∗0jk, β
∗

1jk) with probability min{rM , 1}

(β0jk, β1jk)
(m) with probability 1 - min{rM , 1}.

The reasons for blocking β0jk together with β1jk in a single updating step, as opposed

to considering two separate updating steps, are mostly practical: in this way we

only have to compute one rejection ratio and tune only one proposal parameter.

This allows us to greatly optimize the number of computations needed to sample all

the β parameters for all the combination of the indexes j and k (see Section 2.A.1

for details). Additionally, the posterior correlation between these two parameters

can be extremely high, in the order of |ρ| = 0.9, for some pairs (j, k), so a well

designed proposal will in principle mix the chain faster by improving the exploration

of the support (Gamerman, 1997; Gilks and Roberts, 1996; Chib, 2004; Robert,

2004), which is indeed the case of this sampler. While specially designed proposal

distributions, that move along areas of high joint probability would in principle

work better, this algorithm works sufficiently well in practice to justify the extra

complications.

3. Sampling from gi: Since the Dirichlet distribution is conjugate to the multinomial,

this expression is particularly simple:

gi|...
indep.∼ Dirichlet

(
α1 +

∑
j,t

I(zijt = 1),

α2 +
∑
j,t

I(zijt = 2), . . . , αK +
∑
j,t

I(zijt = K)
)
.
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4. Sampling from α: The full conditional distribution of α,

p(α|...) ∝Gamma(α0|τ, η)×Dirichlet(ξ|1K)×
N∏
i=1

Dirichlet(gi|α)

∝ατ−1
0 exp[−α0η]×

N∏
i=1

Γ (α0)∏K
k=1 Γ(αk)

K∏
k=1

gαkik

∝ατ−1
0 exp[−α0η]×

[
Γ (α0)∏K
k=1 Γ(αk)

]N K∏
k=1

[
N∏
i=1

gik

]αk
, (2.13)

does not have any recognizable form. Thus we will again use a Metropolis-Hastings

within Gibbs step. Erosheva (2002) proposed a two-stage sampling strategy, obtain-

ing samples for α0 and for ξ through the use of two separate Metropolis-Hastings

steps. I have achieved better results in terms of numerical stability, speed of con-

vergence and computational simplicity treating the vector α as a block by using the

following logarithmic scale Gaussian random walk Metropolis-Hastings step, first

proposed in Manrique-Vallier and Fienberg (2008):

(a) (Proposal step) Sample α∗ = (α∗1, α
∗
2, ..., α

∗
K), as independent lognormal variates

from

α∗k
indep.∼ lognormal(logαk, σ2).

The lognormal(µ, σ2) distribution is the distribution of expX, when X are is a

normal variate with expected value µ and variance σ2. It has density

p(x|µ, σ2) =
1

x
√

2πσ2
exp

[
−(log x− µ)2

2σ2

]
,

and expected value E[X] = exp[µ + σ2/2] and variance V [X] = (expσ2 −

1) exp[2µ + σ2]. Note that although this proposal is inspired by the idea of
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producing a random walk in a log-transformed space, in the untransformed

scale it is not centered on the current value of α. In fact for this particular

proposal, we have that E[α∗k|αk] = αk · eσ
2/2. Different from the proposal

in Step 2, this distribution is not symmetric. Thus, will have to include the

Hastings correction term, rH .

(b) (Acceptance step) Let α∗0 =
∑K

k=1 α
∗
k. Then,

rM =
p(α∗|...)
p(α|...)

= exp
[
−η(α∗0 − α0)

](α∗0
α0

)τ−1

×

[
Γ(α∗0)
Γ(α0)

K∏
k=1

Γ(αk)
Γ(α∗k)

]N K∏
k=1

(
N∏
i=1

gik

)α∗k−αk
,

rH =
q(α|α∗)
q(α∗|α)

=
K∏
k=1

α∗k
αk
,

and

r = min{rM × rH , 1}

= min

{
1, exp

[
−τ(α∗0 − α0)

]( K∏
k=1

α∗k
αk

)(
α∗0
α0

)τ−1

×

[
Γ(α∗0)
Γ(α0)

K∏
k=1

Γ(αk)
Γ(α∗k)

]N K∏
k=1

(
N∏
i=1

gik

)α∗k−αk}
.

Finally, update the chain, from step m to step m+ 1 according to the rule

α(m+1) =

 α∗ with probability r

α(m) with probability 1− r.

The application of this algorithm consists of successive applications of steps 1 to 4.
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2.3 A Variant: Discrete Piecewise Constant Trajectories

While the sigmoid trajectory function specification in Section 2.2 seems to be both reason-

able and simple to describe, it can be useful to test how the implicit constraints imposed

by its strong parametric characteristics might affect the estimation.

One simple way to assess this effect is to provide another, less constrained specification

in order to compare the results. In this section, I replace the specification of the extreme

trajectories, λjk(Age), using discrete step functions.

To this end, consider the partition of the range of possible birth dates into c contiguous

intervals, B1 = (−∞, c1], B2 = (c1, c2],...,Bc = (cc,∞), where c1 < c2 < ... < cc−1 are

arbitrary breakpoints. Call B = {B1, B2..., Bc}. Now define the piecewise-constant (on

Age) trajectory function, λjk(Age), as

λ(Age) =
∏
b∈B

[
λ(b)jk

]I(Age∈b)
. (2.14)

where 0 < λ(b)jk < 1 is a constant for each combination of b ∈ B, j, k. Note that since B

is a collection of contiguous non-overlapping intervals, this expression is just specifying a

step function.

Now we can write the marginal distribution of yijt as a function of Age using the trajectory

function in Equation (2.14)

fθj|k(yijt|Ageit) =
∏
b∈B

[
λ(b)j|k

y(1− λ(b)j|k)
1−y
]I(Ageit∈b)

.

Then, replacing this expression on the generic augmented data likelihood of the model in
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Equation (2.6),

p(y, z|λ, g) ∝
N∏
i=1

J∏
j=1

∏
t∈Mi

K∏
k=1

[
gikfθj|k(yijt|Ageit)

]I(zijt=k)

∝
N∏
i=1

J∏
j=1

∏
t∈Mi

∏
b∈B

K∏
k=1

[
gikλ(b)jk

yijt(1− λ(b)jk)
1−yijt

]I(zijt=k,Ageit∈b)
(2.15)

For the prior distribution for the λjkb parameters, a natural choice is the beta distribution,

that takes values on the interval (0, 1). This distribution has the advantage of being conju-

gate to the binomial distribution and therefore producing extremely simple full conditional

distributions (see Erosheva et al. 2007). Additionally, the distribution of Beta(1, 1) is the

uniform distribution in the interval (0, 1), which can be very helpful for expressing prior

ignorance about the λ-parameters.

Although in principle we could specify further constraints in the parameters λ (e.g., mono-

tonicity with respect to time, λ(b1)jk ≤ λ(b2)jk ≤ λ(b3)jk... ≤ λ(bc)jk) I chose not to do it

because the whole point of this exercise is to test the effect of having a less constrained

trajectory specification.
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2.3.1 Estimation

Starting from the augmented data likelihood in Equation (2.15), we can derive the posterior

distribution of parameters as

p(α, λ, g|y, z, x) ∝ p(λ) · p(α0) · p (ξ)

(
N∏
i=1

p (gi|α)

)

×
N∏
i=1

J∏
j=1

∏
t∈Mi

∏
b∈B

K∏
k=1

[
gikλ(b)jk

yijt(1− λ(b)jk)
1−yijt

]I(zijt=k,Ageit∈b)
.

(2.16)

Analyzing the structure of this expression, we see that the algorithm proposed for the Basic

model, with logistic trajectories, in Section 2.2.1 can be applied almost unchanged. We are

only left with the task of replacing the steps for sampling the parameters that characterize

the extreme trajectories (β parameters in Step 2) with appropriate algorithms for sampling

the corresponding parameters, (λ(b)jk), in the new formulation.

From Equation (2.16) we can easily obtain the full conditional distribution of λ(b)jk up to

a constant of proportionality

p(λ(b)jk|...) ∝ p(λ(b)jk)×
N∏
i=1

∏
t∈Mi

[
λ(b)jk

yijt(1− λ(b)jk)
1−yijt

]I(zijt=k,Ageit∈b)
.

This expression can be further simplified by defining the set of indexes Ξ = Ξ(it)
bjk = {(i, t) :



2.4. Comments 40

Ageit ∈ b, zijt = k}. Thus

p(λ(b)jk|...) ∝ p(λ(b)jk)×
∏
Ξ

λ
yijt
(b)jk(1− λ(b)jk)

1−yijt

∝ Beta(λ(b)jk|η1, η2)× λ
∑

Ξ yijt
jkb (1− λ(b)jk)

∑
Ξ(1−yijt)

∝ λ
η1+

∑
Ξ yijt−1

(b)jk (1− λ(b)jk)
η2+

∑
Ξ(1−yijt)−1

∝ Beta

[
λ(b)jk

∣∣∣∣∣η1 +
∑

Ξ

yijt, η2 +
∑

Ξ

(1− yijt)

]
.

Finally, we can construct an MCMC algorithm for sampling from this model by applying

the algorithm for the Basic logistic model in Section 2.2.1, substituting Step 2—sampling

of (β0jk, β1jk)—by the step:

2’. Sampling λ(b)jk: For each b ∈ B, j ∈ {1...J} and k ∈ {1...K} define Ξ = {(i, t) :

Ageit ∈ bzijt = k} and sample

λ(b)jk|... ∼ Beta

[
η1 +

∑
Ξ

yijt, η2 +
∑

Ξ

(1− yijt)

]
.

2.4 Comments

I have described a method to handle multivariate trajectories of the probability of a binary

outcome as a function of time, while simultaneously soft-classifying the population with

respect to a small number classes. The model can be understood as a blend of the Grade

of Membership (Woodbury et al., 1978; Erosheva et al., 2007) and the Multivariate Latent

Trajectory model (Connor, 2006). I have presented the model in general terms and then

specialized it to the task of modeling disability patterns in the NLTCS, proposing a full
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Hierarchical Bayes specification. I have also developed estimation techniques based on

MCMC posterior sampling to approximate the posterior distribution of the parameters.

Besides priors, these models require the selection of specific extreme trajectory functions

to complete the specification, with a particular application in mind. Specifically for the

NLTCS case, I have selected the s-shaped logistic curve, proposed in Connor (2006) as

a reasonable parametric alternative; and another, less constrained one, based on step

functions, for testing purposes. Other specifications are certainly possible, including less

restricted ones. An interesting alternative is the non-parametric splines framework pro-

posed in Dimatteo et al. (2001).

In the specialization for the analysis of the NLTCS, the estimation algorithm relies on

a strong Missing At Random (MAR) assumption, in order to handle the missing values

(Rubin, 1976). This is particularly important since, even though the NLTCS individual

disability outcomes can be understood as a rectangular J × T array, by the survey’s own

design a large number of individuals have one or more missing measurements. Although

the MAR assumption is reasonable for some of the sources of missingness, it is a highly

suspicious assumption when it comes to missingness due to death, as death is an event

that is likely to be correlated with the disability responses. We return to this and related

issues in Chapter 6.

A possible objection to the use of continuous latent trajectories to model disability pro-

gression in the NLTCS is that the long inter-measurement intervals (5 years), coupled with

the fact that the observations are discrete, could provide too little information for accurate

estimation. While in fact, considered in isolation, a few discrete measurements (between 1

and 6 in the NLTCS), spaced every five years provide very limited information, we have to
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bear in mind that the trajectories are estimated conditionally on personal time, as opposed

to chronological time. This means that at each measurement, determined by a point in the

chronological time continuum, we have several subjects that are at distinct points of their

personal time (i.e. have different ages). Therefore, the combined pool of data provides us

with plenty of points to perform very detailed reconstruction of trajectories.

Figure 2.1 illustrates this situation. The left panel in Figure 2.1 presents a (hypotheti-

cal) sample of four individuals that have the exact same underlying trajectory but were

born in different years. They entered the sample at different points in time (waves) and

have a different number of measurements, taken at each wave where they participated.

This situation is represented by four trajectory curves that differ only by their location.

Vertical lines represent the points in time where the survey waves took place; asterisks,

‘(*)’, the waves at which each of these individuals first entered the sample and; the points

over the curves, the measurements registered by the survey. Note that, to help with the

visualization, in the plot the “measurements” are taken from the actual underlying proba-

bilities, instead of the realizations. Also note that not every individual has measurements

in each of the waves. The center panel shows the effect of translating the chronological

time into personal time (age): a “realignment effect”, where each measurement now lies

on a comparable time line. Finally (right panel), combining all the measurements, we see

that we actually have several data points to reconstruct the underlying trend.

This effect can be seen as an advantage of this particular approach to modeling the NLTCS,

that enables the estimation of smooth and interpretable trajectories from very sparse in-

dividual information, but also exposes one of its main weaknesses: considering individuals

from different generations as essentially exchangeable. Whether this is a reasonable as-

sumption or not is a debatable issue. What is certain, though, is that this approach limits
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Figure 2.1: “Realignment effect” when translating the discrete measurements taken from
different individuals to a common age scale.

apriori our ability to attack one of the main issues in the NLTCS analysis, namely the

investigation of the changes from one generation to another (e.g. “Are individuals from

younger generations acquiring disabilities differently than older ones?”). We will return

to this question in Chapter 6.

2.A Appendices

2.A.1 Computational Issues

Sampling from Gamma distributions with small shape parameter

All the algorithms presented in this Section (and all of the ones in the following sections)

have in common Step 3, where we are required to sample, N values gi from Dirichlet distri-

butions. The usual way of obtaining variates g from a Dirichlet(α1, α2, ..., αK) distribution

is through the following algorithm (Devroye, 1986):
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1. For k = 1...K, sample αk
indep∼ Gamma(αk, 1).

2. Compute α0 =
∑K

k=1 αk.

3. Return g = (α1
α0
, α2
α0
, ..., αKα0

).

During the normal execution of the MCMC samplers it is frequent that at some regions

we have to sample from Gamma distributions with very small shape parameter (e.g. αk <

0.01). Since these distributions have most of their mass concentrated towards the origin,

most samplers will return several 0 values, due to numerical underflow. This can lead to

serious computational problems in algorithms where we depend on the positivity of these

samples. For instance, during the execution of the sampler for the basic model, Step 4

requires the computation of the product,
∏N
i=1 gik, which will be driven to 0 if any of these

values has been sampled as 0.

One way to overcome this problem is to make use of the following fact (Robert and Casella,

2004):

L[Gamma(α, 1)] = L
[
U [0, 1]1/α ·Gamma(1 + α, 1)

]
.

Then we sample directly the log transformed gamma variates, log(Y ) ∼ log[Gamma(α, 1)],

through the following two-step algorithm:

1. Sample U ∼ U [0, 1].

2. Sample G ∼ Gamma(1 + α, 1).

3. Return

lY =
logU
α

+ logG.
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Values sampled with this algorithm will be such that exp lY ∼ Gamma(α, 1). These

variates can be used directly to generate log transformed Dirichlet variates and it is rec-

ommended to store them in this form for future use, in order to avoid their degradation

by floating point numerical rounding.

This method has the advantage that, instead of having to sample from a Gamma(α, 1)

distribution where the shape parameter α� 1 would likely produce a numerical underflow

to 0, we just sample from the much more numerically stable Gamma(α+ 1, 1) and U(0, 1)

distributions, and preserve the sampled variates in log transformed form.

Efficient sampling of β parameters

After the production of the N×J×T samples of zijt, the most costly part of the algorithm

for sampling from the basic logistic model is the computation of the rejection ratio for the

Metropolis step in the sampling of parameters βjk. In particular, the expression

rjk =
∏
Ξjk

 1 + exp (β0jk + β1jkAgeit)

1 + exp
(
β∗0jk + β∗1jkAgeit

)


× exp

−β∗20jk − β2
0jk

2σ2
0

+
(
β∗0jk − β0jk

)µ0

σ0
+
∑
Ξjk

yijt


× exp

−β∗21jk − β2
1jk

2σ2
1

+
(
β∗1jk − β1jk

)µ1

σ1
+
∑
Ξjk

yijtAgeit


consists of a main multiplication and also contains two sub-expressions that have to be

computed iterating over the indexes (i, t). Each complete cycle represents N × (Ni) =∑
iNi iterations. A naive implementation of this computation, iterating over each βjk

and computing its corresponding rjk would require J ×K × 3×
∑

iNi iterations.
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A simple observation of the structure of these operations however tells us that, if we

consider all rjk indexes simultaneously, at any given combination of indexes (i, j, t) there

is only one value of rjk being actually computed, since there is only one possible value

of k that will make k = zijt. In other words, Ξjk ∩ Ξjk′ = ∅ for k 6= k′. This means

that we can exploit the special structure of this problem to reduce the number of it-

erations by computing all the rjk factors simultaneously using the following algorithm:

for all j = 1, ..., J and k = 1...K do

a′jk ← 1, a′′jk ← 0, a′′′jk ← 0

end for

for all i = 1...N , j = 1...J , t ∈Mi do

k ← zijt

a′jk ← a′jk ×
1+exp[(β0jk+β1jkAgeit)]
1+exp[(β∗0jk+β∗1jkAgeit)]

a′′jk ← a′′jk + yijt

a′′′jk ← a′′′jk +Ageit · yijt

end for

for all j = 1...J and k = 1...K do

rjk ← a′jk

rjk ← rjk × exp
[

1
2σ2

0
(β∗20jk − β2

0jk)−
1

2σ2
1
(β∗21jk − β2

1jk)
]

rjk ← rjk × exp
[
(β∗0jk − β0jk)

(
µ0

σ0
+ a′′jk

)]
rjk ← rjk × exp

[
(β∗1jk − β1jk)

(
µ1

σ1
+ a′′′jk

)]
end for

return rjk for all j = 1...J and k = 1...K

Given that at each sampling step no βjk depends on the other βj′k′s, this algorithm will
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in fact compute all the J ×K needed rejection ratios, rjk, but in just J × (
∑

iNi + K)

iterations, decreasing the number of needed iterations by a factor of approximately 3×K

respect to the naive implementation. This same observation applies almost directly to the

basic discrete model from Section 2.3.



Chapter 3

Applying the Basic Model to the

NLTCS data

In order to illustrate the methods proposed in Chapter 2 I apply them to the NLTCS data

described in Section 1.1. I fit models with K = 2, 3, 4 and 5 extreme profiles and estimated

the posterior distribution of the parameters. Finally, I comment on how to interpret the

results and on the practicalities of the application of the algorithms.

3.1 Preparation and Preliminary Issues

3.1.1 Data

The dataset used for these computations includes all measurements in all waves (T = 6)

of the subjects that received the screener in at least one of the 1982, 1984, 1989, 1994 or

48
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1999 waves. New subjects that entered during the 2004 wave had to be excluded because

of lack of information about their dates of birth and death. Similarly, all subjects that

in 1982 were institutionalized were excluded because of lack of ADL recording. The final

number of subjects was then N = 39, 323. The response vector includes the six (J = 6)

binary coded ADLs: Eating (j = 1), Dressing (j = 2), Toileting (j = 3), Getting In or

Out of Bed (j = 4), Inside Mobility (j = 5) and Bathing (j = 6). The age has been

computed substracting the date of birth from the exact date of the interview. I have

converted the ages from days to years considering the equivalence 1 year = 365 days. To

facilitate the computations and prior specification, I have also re-centered the age values

by substracting 80 years.

3.1.2 Prior distributions

I have set the prior distribution for α = α0 · ξ as independent α0 ∼ Gamma(1, 5) and

ξ ∼ Dirichlet(1K). This prior expresses the notion of complete ignorance about the

relative importance of the extreme profiles in the population, and preference for smaller

values of the concentration parameter, α0. The reasons behind the last choice are mostly

interpretative: As I explained in Chapter 2, Section 2.2, a Dirichlet distribution with

small values of α0 will produce individual realizations that are closer to one particular

vertex of the simplex, with influence of the other vertices and, as α0 goes all the way

down to 0, a degenerate discrete distribution over the vertices. This arrangement will

allow us to talk about a “dominant profiles” that are influenced by the others, easing the

interpretation of the results while still allowing the mixed membership apparatus to handle

the extra heterogeneity. In this way, I do not consider this choice of prior distribution to

be an expression of prior knowledge but as a modeling decision, in the same sense as the
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selection of the parametric trajectory curves is.

For choosing the prior distribution of β0 and β1 we first may notice that the greatest slope

of any extreme trajectory will be achieved at the inflection point of the logistic curve, at

Age = 0, with value β1/4 (recall that ages re centered at 80 years). The prior distribution

of β1 then depends on the rate of change of the underlying probability of disability. I

choose β1jk ∼ N(µ = 0, σ2 = 100). This distribution could be considered very diffuse as,

considering that about 95% of its values will be within 2 standard deviations from 0, most

of the slopes will range from a flat trajectory (β1jk = 0) to changes of up to 100% in just

20 days (|β1jk| = 2σ).

Similarly, I choose the prior distribution of β0 to be β0jk ∼ N(0, 100) based on the following

observations. If we consider that the center of the curve is at its inflection point, the

trajectory curve is centered around the point Age = −β0/β1. Then, since the proposed

prior specification for β0 is centered around 0, small deviations in the location of the curve

from Age = 0 are already accounted for. Considering that typical individual ages in the

NLTCS range between 65 and 100 years (Age ∈ [−15, 20]), a reasonable large deviation in

location from Age = 0, |β0/β1|, to consider is 20 years. Thus, for an equally reasonably

large value of |β1| = 0.4 (roughly a change in probability of disability from 0 to 100% in

just one month), the greatest magnitude of β0 that we need to consider to achieve such

an offset of 20 years is |β0| = 8. Since the above prior specification has most of its mass

in the interval [−20, 20] I consider it be diffuse over the domain of interest.
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Extreme Profiles σ∗α
K = 2 0.026
K = 3 0.011
K = 4 0.009
K = 5 0.007

Table 3.1: Values of proposal standard deviation σ∗α for basic model with continuous
logistic trajectories.

3.1.3 Execution of the Algorithm

For the first tests of my algorithm, I took random samples from the prior distribution

as initial values. After several trials with the chains converging to essentially the same

posterior distributions, I set the starting values to the following: α0 = 1/3, β0jk = 0,

β1jk = 0 and ξk = 1/K.

I chose the tuning parameters to keep the acceptance rates at around 20%. This was

especially difficult with the vector α, that turned out to be very sensitive to small variations

of the tuning parameter. The final values for the tuning parameter σ∗α are shown in

Table 3.1. These specific values achieved acceptance rates of 20%, 19%, 15% and 20% for

K = 2, 3, 4 and 5, respectively. For the β parameters, I used σ∗0 = 0.2 and σ∗1 = 0.02

for every pair (β0jk, β1jk), achieving acceptance rates between 5% and 30%, for distinct

combinations of the indexes (j, k), with most of the values around 15%. While it is certainly

possible to use different proposals for each pair jk, the use of a single distribution was a

compromise solution that has the advantage of dispensing us from the work of manually

tune 2× J ×K different proposal distributions.

These chains converge quite quickly, after around 15,000 iterations, but exhibit a rather

high autocorrelation. For this reason, from 100,000 long runs, I discarded the first 20, 000
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iterations as a burn-in period and subsampled it, taking a sample every 5 samples and dis-

carding the rest (Robert and Casella, 2004). Although an even less frequent subsampling

was possible and would have reduced the autocorrelation of the chain, the differences in

the final estimates turn out to be negligible.

3.2 Results

In Tables 3.2 to 3.5 I have arranged the main estimated parameters (marginal posterior

means) of the models with K = 2, 3, 4 and 5 extreme profiles. Along with the parameters

of the model I have also computed the quantity

Age1/2,jk = −β0jk/β1jk + 80,

defined as the age where the trajectory for ADL-j in extreme profile k crosses the 0.5

probability threshold. This quantity is related to the “age of onset” of disability and is

useful to provide insight into the temporal characteristics of the extreme profiles. Addi-

tionally, since this model (and any latent class model) is invariant to permutations of the

class labels, I have reordered the extreme profiles according to the estimates of parameter

ξk.

There are several things to note in these results:

1. Estimates for the parameter α0 are consistently small for all models. This was

expected since the prior distribution of α0, Gamma(1, 5), was in fact already ex-

pressing strong apriori preference for small values of α0. We see, however, that 1)

these estimates are strongly data-driven, meaning that the posterior distribution is
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much more concentrated around a particular value than the prior and 2) that the

estimated value of α0 still yields a distribution over the simplex, spread enough to

allow for non-trivial individual-level mixing of extreme trajectories. I comment more

on these two points later in this section.

2. The posterior standard deviation of all estimates is very small. This was expected

because of the abundance of data. In fact, we can obtain essentially the same

estimates (with higher dispersion) using just a fraction (e.g. N = 6000) of the

available data.

3. For each extreme profile, k = 1, 2...,K, the sequence of ADLs obtained after sorting

them according to the estimate of parameter Age1/2,jk is exactly the same: inside

mobility (j = 5), toileting (j = 3), dressing (j = 2), bathing (j = 6), getting in

and out of bed (j = 4) and eating (j = 1). This is quite meaningful, as it informs

us of a seemingly universal temporal ordering among the different manifestations of

disability that resembles an intuitive ordering of tasks in terms of difficulty.

4. All the parameters β1—except for profile k = 5 in the model with K = 5 extreme

profiles—are positive. This will produce, at least for models with less than five

extreme profiles, sound increasing trajectories, that exhibit a progressive increase in

the probability of acquiring a disability as the subject ages.

Figure 3.1 shows kernel density estimates of the posterior distributions of α0 and β021,

together with their corresponding prior distribution, to illustrate the relationship between

priors and posteriors. Compared with their prior distributions, the posteriors are con-

centrated around particular values. This is the case for all the parameters and hyper-

parameters of the model. This fact is particularly interesting in the case of α0, whose
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Figure 3.1: Prior and posterior distributions for parameters α0 and β021 for basic model
with K = 3. The prior distribution for α0 is Gamma(1, 5) and for β0jk is N(0, 100).

prior distribution was already very constraining. What this comparison illustrates is that,

although the prior distribution expresses preference for values of α0 to be near the origin,

the data dominates in the posterior estimation.

Figures 3.2 to 3.5 show plots of the extreme trajectories, for every extreme profile (rows)

and ADL (columns), for models with K = 2, 3, 4 and 5 extreme profiles. These plots, first

introduced by Connor (2006), provide an intuitive idea of the underlying typical trends

in the population and are a good complement to the tabulation of posterior summaries.

Again we can observe some salient features:

1. The first extreme profile in all models (after sorting the extreme profiles decreasingly

according to the value of ξk) exhibit aging progressions where people remain basically

healthy until approximately the age of 90, and then start to experience an increase

in their chances of acquiring a disability.

2. As we consider models with different number of extreme profiles, with extreme pro-

files sorted according to the posterior estimate of the component ξk, from K = 2
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(Figure 3.2) ,to K = 5 (Figure 3.5), we observe that the extreme trajectories form

what essentially seems to be a decreasing gradation on the age of onset of disability

between the first extreme profile (essentially healthy) and the last one (very early

onset of disability). This is quite interesting since the sequence of extreme profiles

has been organized only based on their relative importance in the population (pa-

rameter ξk). This points to the existence of an inverse relationship between the

relative preeminence of each extreme profile in the population and the age of onset

of disability that it is expressing. Exceptions to this tendency are the trajectory

for ADL 1 (eating) in extreme profile k = 4 in the model with K = 4 (Figure 3.4)

and the whole extreme profile k = 5 in the model with K = 5 extreme profiles

(Figure 3.5).

3. Trajectories in profile k = 5 in model with K = 5 (Figure 3.5) show a somewhat

erratic behavior. In particular many of them exhibit decreasing chances of disability

as individuals age. This is certainly counterintuitive and goes against the intended

interpretation of the model. Closer attention to the characteristics of the profile,

in Table 3.5, reveals that its relative preeminence in the population is very small,

with ξ5 = 0.058 (c.f. ξ1 = 0.496 for profile k = 1). This suggests that there might

actually be very few individuals in the sample who are close to this profile. We will

explore this issue further in the Section 3.3 and in Chapter 6.

Since decreasing trajectories go against the intended interpretation of the model, a natural

way of dealing with this situation is simply to constrain the specification so that those

cases are excluded by design. This can be achieved by modifying the prior distributions

of the slope parameters, β1, replacing them with distributions with support in positive

real values. I have implemented such a variation (see Appendix 3.A for details on the
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implementation), but the results pointed in the same direction: for models with K ≥ 5

extreme profiles, the slopes of several trajectories of the less predominant profiles are zero

or close to zero. The rest of the estimates were very similar to the ones obtained with the

less constrained specification. Since nothing seems to be gained from this specification, I

do not consider it further.

We can use estimates of the individual-level posterior membership vectors to construct

instances of the estimated individual-level trajectory curves, by weighting each curve by its

corresponding estimated membership vector component, gik, as specified in Equation (2.1)

in Section 2, for each individual. Figures 3.6, 3.7 and 3.8 show 100 of these individual level

trajectory curves, overlaid with the extreme trajectories as a reference, for all the fitted

models. From these pictures we can form a good idea of how this method is handling the

individual-level heterogeneity. We see that, although most of the curves cluster on the

vicinity of one of the extreme trajectories, as expected from the low posterior values of

α0, several of them lie somewhere in the middle, with trajectories that are the product

of the interaction of the extreme profiles. In this way, we can see that these models have

enough flexibility to accommodate several trajectories that do not lie exactly in one of the

extreme profiles but somewhere in between.

This last point deserves further attention. Looking at the individual level trajectories for

K = 3 (Figure 3.7) and K = 4 (Figure 3.8), besides the clustering of individual trajectories

close to the extreme trajectories (expected from the estimated values of α0), we see that

other “clusters” appear to have emerged in the posterior estimates. This means that the

models are in fact picking up unexpected features of the data while keeping the number

of extreme profiles to a minimum. If we were estimating with a model based on full-

membership or latent class approaches, like the ones in Connor (2006), without the help
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of the mixed-membership device, we would have needed at least an extra class to make

room to those individuals that compose the emerging cluster.

Table 3.6 presents observed and posterior predictive counts from the 26 possible response

patterns of ADLs, aggregated by age range. As a way of comparison it also presents

the X2 statistic computed from the resulting 26 × 5 contingency table for all the fitted

models. We can observe that, in terms of prediction, models perform quite well, with the

possible exception of K = 2. The only problematic cells seem to be those corresponding

to the people who report disabilities in all ADLs simultaneously (‘111111’ in Table 3.6),

that tend to be consistently underestimated in all models. We can also see that the cells

corresponding to no disabilities (‘000000’ in Table 3.6) tend to have consistently good

estimates. This is quite interesting since, as reported by Erosheva et al. (2007), regular

GoM models tend to perform poorly when it comes to fitting non disabled states.

3.3 Using the Discrete Trajectories Variant

As I mentioned in Sections 2.2 and 2.3, in Chapter 2, the choice of the particular trajectory

function used in the estimations in the previous section is arbitrary. While it has produced

estimates of the extreme trajectories that are both reasonable and sound (up to K = 4),

one might wonder what is the effect of the strong parametric assumptions implied, in

particular monotonicity and smoothness, and what would happen if those assumptions

are relaxed.

In order to assess this effect I fit the model to the same NLTCS data using the Discrete

Trajectories variant of the basic model, introduced in Section 2.3 of Chapter 2. Remember
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Parameter Estimate
α0 0.328 (0.007)

Parameter ADL(j) Estimate Extreme Profile-k (sd)
k = 1 k = 2

ξ – 0.824 (0.002) 0.176 (0.002)

β0∗∗

1 (EAT) -6.496 (0.121) -0.494 (0.026)
2 (BED) -4.861 (0.063) 1.736 (0.053)
3 (MOB) -3.789 (0.042) 2.843 (0.084)
4 (DRS) -5.518 (0.082) 0.945 (0.039)
5 (BTH) -3.163 (0.032) 3.298 (0.097)
6 (TLT) -4.710 (0.059) 1.292 (0.045)

β1∗∗

1 (EAT) 0.293 (0.008) 0.136 (0.003)
2 (BED) 0.312 (0.005) 0.218 (0.005)
3 (MOB) 0.289 (0.004) 0.273 (0.007)
4 (DRS) 0.310 (0.006) 0.182 (0.004)
5 (BTH) 0.247 (0.003) 0.295 (0.008)
6 (TLT) 0.280 (0.005) 0.204 (0.005)

Age1/2

1 (EAT) 102.171 (0.294) 83.641 (0.236)
2 (BED) 95.577 (0.130) 72.038 (0.144)
3 (MOB) 93.128 (0.107) 69.589 (0.132)
4 (DRS) 97.818 (0.173) 74.824 (0.155)
5 (BTH) 92.823 (0.120) 68.810 (0.124)
6 (TLT) 96.831 (0.160) 73.663 (0.144)

Table 3.2: Posterior means for parameters of interest for basic model with K = 2 extreme
profiles. Numbers between parenthesis are posterior standard deviations.
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Parameter Estimate
α0 0.261 (0.006)

Parameter ADL(j) Estimate Extreme Profile-k (sd)
k = 1 k = 2 k = 3

ξ – 0.645 (0.004) 0.251 (0.004) 0.104 (0.002)

β0∗∗

1 (EAT) -8.843 (0.322) -3.100 (0.060) -0.074 (0.046)
2 (BED) -7.022 (0.151) -1.737 (0.055) 3.559 (0.151)
3 (MOB) -5.332 (0.096) -0.757 (0.046) 5.734 (0.274)
4 (DRS) -7.885 (0.218) -2.249 (0.055) 2.028 (0.084)
5 (BTH) -4.452 (0.071) -0.229 (0.039) 6.210 (0.304)
6 (TLT) -6.587 (0.145) -1.768 (0.049) 2.491 (0.100)

β1∗∗

1 (EAT) 0.357 (0.017) 0.347 (0.009) 0.104 (0.006)
2 (BED) 0.394 (0.010) 0.551 (0.013) 0.289 (0.013)
3 (MOB) 0.348 (0.007) 0.520 (0.012) 0.422 (0.022)
4 (DRS) 0.390 (0.013) 0.462 (0.011) 0.202 (0.008)
5 (BTH) 0.295 (0.006) 0.425 (0.009) 0.442 (0.024)
6 (TLT) 0.337 (0.009) 0.474 (0.011) 0.233 (0.009)

Age1/2

1 (EAT) 104.768 (0.462) 88.933 (0.172) 80.725 (0.477)
2 (BED) 97.824 (0.174) 83.156 (0.091) 67.674 (0.179)
3 (MOB) 95.332 (0.139) 81.457 (0.084) 66.399 (0.155)
4 (DRS) 100.210 (0.235) 84.873 (0.105) 69.959 (0.197)
5 (BTH) 95.107 (0.155) 80.539 (0.093) 65.940 (0.164)
6 (TLT) 99.538 (0.231) 83.731 (0.097) 69.315 (0.181)

Table 3.3: Posterior means for parameters of interest for basic model with K = 3 extreme
profiles. Numbers between parenthesis are posterior standard deviations.
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Extreme Profiles
Age Range Pattern Observed K = 2 K = 3 K = 4 K = 5

65− 70

000000 21361 19922 20635 21042 21249
111111 295 0 11 45 175
010000 292 554 301 243 288
111110 192 5 44 108 260
000100 167 447 220 157 172
010110 117 62 103 95 68
010100 103 180 142 92 72
000110 89 101 81 59 64

70− 79

000000 34508 32148 33340 33550 33773
010000 1143 1217 1386 1222 1232
111111 1087 156 403 378 429
111110 692 407 733 738 789
000100 584 779 734 670 624
010100 412 413 332 427 411
010110 375 345 252 286 282
110110 335 358 356 365 384

79− 80

000000 15536 13382 13939 14354 14600
111111 1734 818 821 997 1159
010000 1178 1845 1349 1385 1251
111110 1018 920 995 1065 911
000100 562 1251 881 839 725
010100 536 413 534 503 550
010110 529 256 373 355 431
110110 461 349 441 448 465

90 <

000000 1311 369 736 904 907
111111 1025 541 793 858 860
111110 529 303 351 450 463
010110 196 161 126 115 130
010000 193 287 338 315 288
010100 189 246 211 179 190
110110 158 145 114 114 128
000100 138 254 281 262 235

X2 141970 15343 7516 4638

Table 3.6: Observed and mean predictive posterior aggregated counts for the 10 most
populated response patterns by age range, for basic model with K = 2, 3, 4, 5. Within each
age group the response patterns are sorted decreasingly according to observed frequencies.
For each model the X2 statistic has been computed from the complete 26× 4 contingency
table.
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Figure 3.6: Individual-level mixture of trajectories for model with K = 2 extreme profiles
for each ADL. Extreme trajectories are represented with thick lines and and a random
sample of 100 individual posterior trajectory curves are plotted using thin lines

that the variant is exactly the Basic Model, but with extreme trajectories, λjk(Age),

modeled using step functions.

For the trajectories, I have defined the partition of the age range for constructing the

step function with breakpoints c1 = 68, c2 = 71, c3 = 74, c4 = 77, c5 = 80, c6 = 83 and

c7 = 86. This particular choice of break points defines trajectories over time with 8 steps

per combination of ADL and extreme profile, and therefore 8 × J × K parameters to

describe them.

For the trajectory parameters I have selected Beta(1, 1) priors, as discussed in Chapter 2.

For the parameters α, I have used the same priors as in the Basic Model with continuous

trajectories.
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Figure 3.7: Individual-level mixture of trajectories for model with K = 3 extreme profiles
for each ADL. Extreme trajectories are represented with thick lines and and a random
sample of 100 individual posterior trajectory curves are plotted using thin lines

Applying the algorithm, we obtain posterior estimates for α0 and ξ (Table 3.7) that are

almost identical to the ones obtained through the application of the basic model with

continuous trajectories in Section 3.2 (cf. Tables 3.2, 3.3, 3.4 and 3.5).

Figures 3.9, 3.10 and 3.11 present the estimated posterior extreme trajectories for models

with K = 3, 4 and 5, overlaid with the continuous trajectories estimated from the Basic

Model with continuous trajectories for comparison. The comparison is quite instructive.

In all cases the discrete and continuous trajectories for the most predominant extreme

profiles (k = 1, 2) are essentially the same. Extreme profile k = 3 in models with K = 3

(Figure 3.9, last row) and extreme profile k = 4 in models with K = 4 (Figure 3.10, last

row) show a divergence when it comes to late ages. This is a phenomenon that occurs at

late ages in profiles where subjects have an increased probability of acquiring disabilities
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Figure 3.8: Individual-level mixture of trajectories for model with K = 4 extreme profiles
for each ADL. Extreme trajectories are represented with thick lines and and a random
sample of 100 individual posterior trajectory curves are plotted using thin lines

early in life. A likely explanation is that subjects for whom those characteristics are

predominant, tend to die earlier than their peers that are closer to healthier profiles. I

revisit this hypothesis in Section 7.

Looking at profile k = 5 for models with K = 5 extreme profiles (Figure 3.11) we see that

all trajectories behave quite erratically. This situation mirrors that encountered in the

application of the model with continuous trajectories in Section 3.2 (overlaid on the same

figure), giving more evidence for the hypothesis of overfitting when K > 4.
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Model Parameter Estimate [s.d.]

K = 2 α0 0.325 [0.007]
ξ (0.820 [0.002], 0.180 [0.002])

K = 3 α0 0.286 [0.006]
ξ (0.632 [0.004], 0.263 [0.003], 0.105 [0.002])

K = 4 α0 0.269 [0.006]
ξ (0.558 [0.004], 0.256 [0.004], 0.117 [0.003], 0.069 [0.001])

K = 5 α0 0.261 [0.006]
ξ (0.519 [0.005], 0.251 [0.005], 0.130 [0.003], 0.050 [0.001], 0.050 [0.002])

Table 3.7: Posterior means for parameters α0 and ξ for basic model with discrete step
trajectories for K = 2, 3, 4, 5 extreme profiles. Numbers between brackets are posterior
standard deviations.

3.4 Discussion

The analyses I have presented in this chapter illustrate several desirable characteristics of

the proposed method. They produce meaningful and easy to interpret summaries of the

main trends in the population—the extreme trajectories—while at the same time produc-

ing estimates of the way in which the individuals are situated with respect to those extreme

profiles, placing them as points over a continuous space defined by the simplex ∆K−1. This

approach fulfills two of the main goals outlined in the introduction of Chapter 2, namely

interpretable summarization and handling of latent heterogeneity. Compared with hard

classification techniques (cf. Connor 2006), my modelling approach allows me to keep the

number of extreme trajectories small (and therefore easier to interpret), while at the same

time providing enough flexibility to model complex trajectories that would otherwise not

be well described by such a small number of extreme profiles. We must bear in mind that

the method is in fact representing very large contingency tables (26×6 in the application),

through the imposition of strong parametric assumptions and the use of covariates.

In Section 2.1, I emphasized that the choice of the trajectory functions is open to the mod-
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eler’s decision, to fulfill the particular application needs. In this application I have applied

both logistic s-shaped curves and step functions. The agreement between the estimates for

the predominant profiles obtained with these two specifications provides evidence that the

logistic trajectories are indeed a reasonable modeling decision. In particular, the inherent

assumption of monotonicity is likely helping to make up for regions where the data are

sparse to help in determining the trajectory, e.g., late ages in profile k = 3 in the model

with K = 3 (Figure 3.9).

My results provide some interesting insights into the data. Most individuals end up placed

close to a “healthy profile” (profile k = 1 in all applications of the model), where the

trajectories reflect a basically healthy life until very late ages (90+). Then progressively,

profiles with trajectories that reflect higher probabilities of disability at earlier ages are

less and less predominant. In fact, if we permute the profiles, ordering them according to

the expected value of the populational distribution of profile membership (component ξk

for extreme profile k), the resulting ordering of trajectories will also show a progression

from healthier trajectories to trajectories with earlier onset of disability.

The obtained sequence of disability manifestations [inside mobility→ toileting → dressing

→ bathing → getting in and out of bed → eating] within extreme profiles also provides

further insight into disability patterns. This sequence, which was obtained exclusively from

the data by sorting ADLs based on parameter Age1/2,jk, resembles an intuitive ordering

of tasks in terms of difficulty. It also seems universal, as it is exactly the same for each

extreme profile within a model and for models with a different number of extreme profiles.

These results demonstrate one of the positive features of the proposed models that is

shared with other latent-trajectory approaches (c.f. Connor 2006).
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One important characteristic of the model, that is well illustrated by the application,

is that it handles all of the time dependence based on personal time (Age) opposed, to

the introduction of either a “wave effect” (period effect) or cohort effect. Information

about the waves is only used to determine the age of individuals, in order to place the

responses into a comparable (personal) time scale. This point differentiates these methods

from other longitudinal approaches, such as the one presented in White (2008), where the

disability state transitions are estimated from one wave to another (basically a period

effect). Chapter 4 will deal with the modeling and estimation of cohort effects.

3.A Appendix: Non-negative Priors for Trajectory Slope

Parameters

In this appendix I modify the specification of the Basic model with continuous trajectories,

presented in Section 2.2, constraining them to be nondecreasing. I have applied this

modified version in Section 3.2 when discussing the possibility of excluding by design the

cases of decreasing extreme trajectories.

A simple way of achieving this objective is to change the prior distribution of the slope

parameter for each extreme trajectory, βjk, selecting distributions with support on the non-

negative real numbers, R+. A simple and convenient choice is the Gamma distribution:

β1jk
iid∼ Gamma(a1, b1).

Analyzing the algorithm proposed in the previous Chapter, in Section 2.2.1, it is clear that

the only step that is dependent on the prior distribution of β1jk is Step 2, the sampling of
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the pair (β0jk, β1jk). This suggests that it is sufficient to modify that algorithm, replacing

Step 2 by the following:

2′ Sampling from (β0jk, β1jk): Define Ξ = Ξ(ij)
tk = {(i, j) : zijt = k}. The full

conditional distribution of (β0jk, β1jk) is

p
(
(β0jk, β1jk)|...

)
∝ p(β0jk, β1jk)×

∏
Ξ

exp
[
(β0 + β1Ageit)yijt

]
1 + exp

(
β0 + β1Ageit

)
∝ exp

[
(a1 − 1) log β1 − b1β1

]
× exp

[
− β2

0

2σ2
0

+
β0µ0

σ0

]
× exp

[
β0

∑
Ξ

yijt +
∑

Ξ

yijt ·Ageit

]

∝ exp

[
− β2

0

2σ2
0

+ β0

(
µ0

σ0
+
∑

Ξ

yijt

)
+ β1

(
−b1 +

∑
Ξ

Ageit · yijt

)
+ (a1 − 1) log β1

]

Since this distribution is non-standard, we can apply the following Metropolis-

Hastings step:

(a) Proposal Step: Sample the proposal values

β∗0 ∼ N
(
β0, σ

∗2
0

)
β∗1 ∼ lognormal

(
log β1, σ

∗2)

(b) Rejection Step: Different from the original algorithm, this proposal distribution
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is not symmetric anymore, then we have to include the Hastings correction term

r =
p(β∗0 , β

∗
1 |...)

p(β∗0 , β
∗
1 |...)

q(β1|β∗1)
q(β∗1 |β1)

=
∏
Ξ

[
1 + exp [(β0 + β1Ageit) yijt]
1 + exp [(β∗0 + β∗1Ageit) yijt]

]

× exp

[
−β
∗2
0 − β2

0

2σ2
0

+ (β∗0 − β0)

(
µ0

σ0
+
∑

Ξ

yijt

)]

× exp

[
(a1 − 1)

(
log β∗1 − log β1

)
+
(
β∗1 − β1

)(
−b1 +

∑
Ξ

Ageit · yijt

)]
β∗1
β1

=
∏
Ξ

[
1 + exp [(β0 + β1Ageit) yijt]
1 + exp [(β∗0 + β∗1Ageit) yijt]

]

× exp

[
−β
∗2
0 − β2

0

2σ2
0

+ (β∗0 − β0)

(
µ0

σ0
+
∑

Ξ

yijt

)]

× exp

[
a1

(
log β∗1 − log β1

)
+
(
β∗1 − β1

)(
−b1 +

∑
Ξ

Ageit · yijt

)]

It is worth noting that this expression is exactly the same as Equation (2.12),

except for the last line. Thus, the implementation of this algorithm should be

straightforward, just slightly modifying the original sampler from Section 2.2.1.



Chapter 4

Modeling Generational

Differences: Grouped Data Model

4.1 Introduction

In this chapter I propose an extension of the Basic Trajectory GoM model introduced

in Chapter 2 that introduces birth cohort effects as part of the factors that explain the

observed patterns of disability. The introduction of these effects is directed at answering

questions about changes in the ways of aging across different generations, e.g. to provide

answers to questions like “are younger generations acquiring disabilities differently than

older ones?”

Up to this point in the thesis, the Basic GoM Trajectory Model proposed in Chapter 2

attributes all variation over time to the natural individual progression of aging. The
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observable differences in the prevalence of disability between different epochs are then ex-

plained by the aggregation of individuals that are at distinct points of their life-trajectories

at each epoch. Although this formulation explicitly assumes a great deal of individual-level

heterogeneity, modeled through the introduction of a partial-membership structure, a key

assumption is that this heterogeneity can be fully explained by a common population-level

underlying probability distribution, regardless of other factors.

When formulating assumptions to model changes over time we can basically distinguish

three different ways of introducing that variability. We can assume that it is an age-

related or “time in the system” phenomenon. This was the approach that I took when

I constructed the Basic GoM trajectory model. Another perspective can be obtained by

the introduction of a “period effect”: an external event or process over absolute time that

affects all individuals simultaneously. Finally we can analyze it as a cohort effect. In this

context by “cohort” we understand the same as with the term “generation”: a group of

individuals that were born within the same period (Ryder, 1985).

There is a fundamental tension between the modeling of age, cohort and period effects

that arises from the fact that they are linearly dependent. In fact, a person’s age is

defined to be the time between the assessment date (period) and their date of birth:

Ageit = Datet − DOBi. This can create an identification problem if the corresponding

effects are linearly related, and appropriate identifiability constraints are not imposed

(Fienberg and Mason, 1985). Although this is a fundamental problem that, when present,

has to be addressed explicitly, the models I present in this section do not consider any

period effects. Thus, I will not consider this issue any further.
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4.2 Cohorts as covariates

Birth cohorts are defined by date intervals or grouping of possible date of births. Then,

after having defined those groups, an individual’s generation will be completely determined

by the date of birth (DOB). If we want to assess the effect of the individual’s generational

group in their way of acquiring disabilities, a direct way of doing it is to extend our models

to include the DOB as a covariate.

There are basically two alternatives when it comes to covariate placement in a model like

the GoM trajectory model. We could place the covariates affecting directly the response

probabilities at the level of extreme profiles. This is the approach I have already taken

with the Age covariate, to form the extreme trajectories, λjk(Age). The other alternative

is to somehow make the membership structure dependent on the covariates.

In this section I explore the second alternative, making the membership structure de-

pendent on the covariates. The reasons for this choice are mostly interpretative. In the

first place, I have regarded each individual’s classification, expressed by the membership

vector, gi, as a static characteristic of each individual. Making it dependent on other

static individual characteristics can be viewed as a way of using additional information to

improve the classification expressed by the individual membership.

The second reason is that such an approach will allow us to keep the extreme trajectories

the same for the whole population. This provides us with a stable frame of reference to

compare individuals with each other and as part of generational groups. The population

can then be stratified by generations and we can compare the distribution of the member-

ship vectors across different strata. Finally, we can read differences in the ways of aging
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as differences in the underlying distribution of membership, that can be interpreted using

the common frame of reference provided by the extreme trajectories.

4.3 Extending the Basic Model to Handle Generational Groups

To implement the approach just outlined, to make the membership vectors dependent on

DOB, we have to decide how will the DOB covariate will be related to the membership

structure. Since we are interested in comparing the underlying distribution of member-

ship, conditional on generational group, a direct way of enabling such comparisons is to

keep the individual level structure proposed in the Basic Model, but replace the common

distribution of membership vectors by a family indexed by a (possibly stochastic) function

the covariate, DOB:

Pr (Yijt = yijt |gi, Xi, θ ) =
K∑
k=1

gikfθj|k(yijt|Ageit),

gi|DOBi ∼ Gα(DOBi).

I will keep the specification of the distribution of membership vectors introduced for the

Basic model, using the Dirichlet distribution indexed by the parameter α, by specifying the

family Gα(DOB) = Dirichlet(α(DOB)). Then the indexing parameter will be the function

α : R→ R+K defined by

α(DOB) =
(
α1(DOB), α2(DOB), ..., αK(DOB)

)
. (4.1)

A simple, yet reasonably flexible, way of specifying this relationship is to define a partition
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of the population into intervals, defined by ranges of dates of birth, and assume the mem-

bership distribution indexing parameter, α, constant for each interval on the partition.

Let Γ = {γ1, γ2, ..., γC} be a finite partition (contiguous non overlapping intervals) of the

range of possible dates of birth, similar to the partition of ages defined in Section 2.3 for

the construction of the discrete extreme trajectories. This partition assigns a particular

generational group (or interval of dates of birth) to each individual in the sample. Then,

within each subset assume a homogeneous distribution of membership vectors, by assum-

ing a constant indexing parameter for Gα, α(γ)∗. Now we can define the generic k-th

component of the function α(DOB) by

αk(DOB;α(∗)k) =
∏
γ∈Γ

[
α(γ)k

]I(DOB∈γ)
, (4.2)

where α(γ)k > 0. The argument after the semi-colon in the notation, αk(DOB;α(∗)k), is

just a reminder of the fact that we are introducing a number of new parameters: as many

K-dimensional vectors as generational groups are defined in Γ.

This specification is very similar to the one used in the Basic model, just taking a less

constrained distribution for the membership vectors. In more abstract terms we have that

DOB is just an instance of an individual-level time-invariant covariate, of the same type

as those introduced in Chapter 1, Section 1.2, under the generic symbol Xf
i . Assuming

that these covariates are independent and identically distributed samples from a common

population-level distribution, FX , it is clear that the proposed extension is just replacing

the probability measure associated with the individual membership scores, G, by the
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mixture

G(·) =
∫
G(·|x)FX(dx), (4.3)

which in this specific case is just the discrete mixture:

G(·) =
∑
γ∈Γ

p(γ)Gα(γ)
(·). (4.4)

Since we are actually interested in the dependency between the distribution and the co-

variate DOB, I just leave the specification of the distribution G conditional on DOB.

Extending the Basic model to handle generational information thus consists of replacing

the population level distribution of membership vectors, p(gi|α) by the conditional version,

p
(
gi|α(DOBi;α(∗)∗)

)
.

I consider that all of the newly introduced parameters come from a common distribution,

in the same way that I have previously assumed that the parameter α was a single draw

from a hyperdistribution in the Basic Model.

To this end, define

α(γ)0 =
K∑
k=1

α(γ)k and ξ(γ)k =
α(γ)k

α(γ)0
,

so that we can again use the priors

α(γ)0
iid∼ Gamma(τ, η) and ξ(γ)∗

iid∼ Dirichlet(1K),

just as with the Basic Model.



4.4. Estimation 84

4.4 Estimation

The posterior distribution of parameters conditional on the data and covariates is quite

similar to the basic model:

p(α, β, g|y, z, Age,DOB) ∝ p(β)p(α)

(
N∏
i=1

p
(
gi∗|α(DOBi;α(∗)∗)

))
︸ ︷︷ ︸

(∗)

×
N∏
i=1

J∏
j=1

∏
t∈Mi

K∏
k=1

(
gik

exp(yijtβ0jk + yijtβ1jkAgeit)
1 + exp(β0jk + β1jkAgeit)

)I(zijt=k)

,

under the same considerations as in Chapter 2.2.1.

If we replace the expression α(DOB) by the partition-wise constant specification given by

Equation (4.2), the expression labeled (∗) becomes

(∗) =
N∏
i=1

p
(
gi|α(DOBi)

)
=
∏
γ∈ Γ

N∏
i=1

[
p
(
gi|α(γ)∗

)]I(DOBi∈γ) (4.5)

From the structure of this distribution, it is clear that most of the steps of the MCMC

algorithm developed for the Basic Model can be reused and the rest adapted. The samplers

that have to be adapted are those corresponding to α and gi.

Let γi ∈ Γ be the unique interval from the partition such that DOBi ∈ γi.
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1. Sampling from gi. The full conditional distribution of gi is

p(gi|...) ∝ p (gi |α(DOBi))×
K∏
k=1

g
∑
j,t I(zijt=k)

ik .

Using the expression from Equation (4.5), we get

p(gi|...) ∝
∏
γ∈ Γ

[
p
(
gi|α(γ)∗

)]I(DOBi∈γ) ×
K∏
k=1

g
∑
j,t I(zijt=k)

ik

= p
(
gi|α(γi)∗

)
×

K∏
k=1

g
∑
j,t I(zijt=k)

ik

= Dirichlet(gi|α(γi)∗)×
K∏
k=1

g
∑
j,t I(zijt=k)

ik

= Dirichlet(gi|α(γi)∗)×
K∏
k=1

g
∑
j,t I(zijt=k)

ik

= Dirichlet

α(γi)1 +
∑
j,t

I(zijt = 1), ..., α(γi)K +
∑
j,t

I(zijt = K)

 .

2. Sampling from α(γ)∗ Define Ξγ = {i : DOBi ∈ γ}. The full conditional distribution

of α(γ)∗ is

p(α(γ)∗|...) ∝ p(α(γ)∗)×
N∏
i=1

[
p
(
gi|α(γ)∗

)]I(DOBi∈γ)

∝ Gamma(α(γ)0|τ, η)×Dirichlet(ξ(γ)|1K)×
N∏
i=1

Dirichlet(gi|α(γ)∗)
I(DOBI∈γ)

∝ ατ−1
(γ)0 exp[−α(γ)0η]×

N∏
i=1

[
Γ
(
α(γ)0

)∏K
k=1 Γ(α(γ)k)

K∏
k=1

g
α(γ)k

ik

]I(DOBI∈γ)

∝ ατ−1
(γ)0 exp[−α(γ)0η]×

[
Γ
(
α(γ)0

)∏K
k=1 Γ(α(γ)k)

]#(Ξγ) K∏
k=1

[∏
Ξγ

gik

]α(γ)k

,
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where #(Ξγ) is the number of elements in the set Ξγ or, equivalently, the number of

individuals with Date of Birth within the interval γ.

This expression is similar to the corresponding one in the Basic Model (Equa-

tion 2.13): we are only replacing all the iterations over the whole sample (i.e.

i = 1...N) to iterations over the individuals whose DOBs fall within the interval

γ. This suggests adapting the procedure in the algorithm by just replacing r, in

step 4, Chapter 2 by

r = min

{
1, exp

[
−τ(α∗0 − α(γ)0)

]( K∏
k=1

α∗k
α(γ)k

)(
α∗0
α(γ)0

)τ−1

×

[
Γ(α∗0)

Γ(α(γ)0)

K∏
k=1

Γ(α(γ)k)
Γ(α∗k)

]#(Ξγ) K∏
k=1

∏
i∈Ξγ

gik

α∗k−α(γ)k}

and update the chain, from step m to step m+ 1 according to the rule

α
(m+1)
(γ)∗ =

 α∗ with probability r.

α
(m)
(γ)∗ with probability 1− r.

4.5 Further Remarks

In this chapter, I have proposed a simple extension of the Basic GOM Trajectory model

that can accommodate information about birth cohorts. Keeping the extreme trajectories

the same for the whole population enables us to use them as a fixed references for com-

parison between different cohorts. Additionally, it enables us to use data from the entire

sample to reconstruct them, increasing the quality of the estimates.

Although the proposed extension was explicitly developed to assess differences between
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different generational groups, the method presents a generic way of introducing time-

invariant covariates by means of stratifying the population into disjoint classes. It can be

used unchanged to handle any sort of strata whose effect could be modeled as a particular

tendency in the membership structure of its individuals. A natural use of this idea is to

model the effect attributable to other time invariant covariates, like sex or even sampling-

related strata.

This idea can also be extended in a more sophisticated way by specifying other parametric

dependence relationships between the membership distribution and the covariates, either

by specifying the parameters of the Dirichlet distribution as another parametric function

of the covariates,α(X), or by replacing the prior distribution of the membership scores,

G, by another distribution conditional on the covariates, like the multilevel-logistic prior

proposed in Bertolet (2008) and Blei and Lafferty (2007).

This model is deliberately attributing all the systematic time variation in the disability

responses to age and cohort. While this specification produces a richer and more versatile

model than just ignoring cohort effects, as in Chapter 2, relevant period effects could be

ignored and fudged into the other effects. In the study of disability, effects such as medical

breakthroughs or changes in public policy are obvious reasons to believe that period effects

might be relevant.



Chapter 5

Applying the Grouped Model to

the NLTCS

In this chapter, I apply the extension of the GoM trajectory model proposed in Chapter 4

to the NLTCS data. To this effect I define an arbitrary partition of the range of dates

of birth present in the NLTCS sample (cohorts) and use the Grouped GoM trajectory

model to estimate the underlying distribution of membership vectors, conditional on the

generational groups. Finally, I use the estimates of the parameters of the population-level

distribution, conditional generational on membership, to draw conclusions about those

generations.

88
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Cohort DOB 1982 1984 1989 1994 1999 2004 (*)
(t = 1) (t = 2) (t = 3) (t = 4) (t = 5) (t = 6)

1 1 6329 6025 1347 1397 617 70
2 2 7631 7082 3452 3335 1753 575
3 3 3696 7839 2627 5102 3679 2010
4 4 1 463 2410 4581 4724 3505
5 5 0 0 0 2478 6403 4251

(*) Only individuals present in 1999

Table 5.1: Definition of cohorts and number of measurements at each wave. Cohort 5 only
have measurements in the last three waves of the NLTCS.

5.1 Preliminaries

The data used in this chapter is the same that was used in Section 3 to generate the

estimates for the Basic GoM model and thus the reader should refer to Chapter 3 for

details.

In addition, I have defined five cohorts or generational groups, partitioning the ranges

of possible dates of birth according to the intervals defined in the first two columns of

Table 5.1. I selected these intervals so that they group approximately the same number

of individuals from the sample.

Table 5.1 also shows the number of measurements at each wave, for each cohort. A salient

feature of this arrangement is that individuals from the youngest cohort (cohort 5—born

after 1926) have measurements only in the last three waves due to age eligibility, as its

oldest members turned 65 after 1991.

It is also worth noting that by their definition, neither the oldest (cohort 1—born before

1906) nor the youngest (cohort 5—born after 1926) cohorts spans the whole range of
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Figure 5.1: Distribution of age coverage for all defined generational groups.

relevant DOBs in the NLTCS. In fact, the oldest individual in cohort 5 can be at the most

78 years old in 2004, while the youngest individual from cohort 1 cannot be younger than

76 years old in 1982. Figure 5.5 shows the distribution of pooled ages from the NLTCS

sample, at every wave, stratified by generational group.

I selected the prior distributions to match those of the Basic model, in Chapter 3, in

part because the same considerations discussed there apply in this case, and to allow

comparisons, as I am considering this model as an extension of the original basic GoM

trajectory model.

The execution of the algorithm is very similar to the execution of the algorithm correspond-

ing to the basic model and the same considerations in terms of proposal distributions for

the common parameters apply. While it makes sense to consider different tuning param-

eters for the proposal distributions of each cohort’s membership distribution parameter,
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α(γ)∗, in practice it is enough to tune the sampler using a common proposal distribution.

5.2 Results

The main objective of the analysis with this model is to compare the underlying distri-

bution of the membership vectors conditional on generational groups. We can do this

by directly comparing the parameters of these distributions for each generational group

γ ∈ Γ, α(γ)∗ and interpret them with respect to the common extreme trajectories, defined

by the parameters β.

The common extreme profile parameters, β, are very similar to those computed using

the basic model, and therefore we refer to the description in their corresponding section

(Section 3.2 in Chapter 2). The corresponding posterior estimates under this model are

in Tables 5.2 to 5.5 in the Appendix of this Chapter.

Figures 5.2 to 5.4 show the estimates (posterior means) of the components of the vector ξ

for models with K = 2, 3 and 4 extreme profiles. For each generational group the sequence

of values of ξk, reading from left to right are linked with lines. Read from left to right,

these sequences indicate the evolution of the relative weight of the k-th component in each

cohort, as we shift our attention from older to younger cohorts.

The most striking feature in these plots is the evident increasing monotonicity of the

relative importance of the first component (k = 1) in each cohort, as we consider younger

and younger cohorts, i.e. ξ(1)1 < ξ(2)1... < ξ(5)1. This is especially clear in models with

K = 2 and K = 3. In the model with K = 4, because of the high posterior dispersion it is

not clear if the youngest generation actually follows this pattern. This trend is telling us
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that, as we consider newer cohorts, their members tend to be closer and closer to profile

k = 1. This profile corresponds to the healthiest aging progression, with extremely low

probability of acquiring disabilities until very advanced ages, as it can be observed, for

instance, in Figure 3.3, in Chapter 3. Thus, as we consider younger generations, individuals

tend to have healthier ways of aging, compared with their elders.

Further, we note that in these plots, the high posterior uncertainty of the estimates of

the parameter ξ for the members of the last (youngest) generation. This situation starts

to be apparent for K = 3 and for K = 4 is quite evident. This suggests that we should

not take the apparent decrease from ξ(4)1 to ξ(5)1 too seriously, since the spread of the

marginal posterior distribution of these parameters is too large. A likely explanation for

this effect is the lack of data for ages past 78 years old in cohort 5, as we noted previously.

I comment more on this in the next section.

To evaluate the fit of these models to the data, I have computed posterior predictive counts

in the exact same way as I did for the Basic model. The results are presented in Table 5.6.

When comparing these results to the ones obtained through the application of the Basic

model (Table 3.6), we see that they are almost exactly the same. This could be expected

given the similarity of the extreme profile estimates for both models and the fact that,

although the Basic model is in fact more constrained than with the extended model, it

still has a great degree of flexibility to handle the individual heterogeneity.
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Figure 5.2: Evolution of the parameter vector ξ across different generations for model
with K = 2 extreme profiles. The error bars show the 95% equal tail posterior credible
intervals associated with the k-th component of the vector ξ.
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Figure 5.3: Evolution of the parameter vector ξ across different generations for model
with K = 3 extreme profiles. The error bars show the 95% equal tail posterior credible
intervals associated with the k-th component of the vector ξ.
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Figure 5.4: Evolution of the parameter vector ξ across different generations for model
with K = 4 extreme profiles. The error bars show the 95% equal tail posterior credible
intervals associated with the k-th component of the vector ξ.

5.3 Discussion

The application of the Grouped GoM trajectory model to the NLTCS data illustrates

that it can be a powerful and easily interpretable tool in assessing individual differences

attributable to cohort and in general, observed time-invariant characteristics of the indi-

viduals.

Because of the model formulation, requiring reading the generational differences with re-

spect to population-level shared extreme profiles, we have to start by interpreting the

extreme profiles themselves. After that we can read differences between cohorts as dif-

ferences in the relative weight of each extreme profile in the population, directly from

parameters ξ(γ)k.

In terms of answering the motivating question “do younger generations acquire disabilities



5.3. Discussion 95

differently than older ones?”, the answer provided by this exercise is “yes”. Furthermore,

there appears to exist a monotonic increase in the relative importance of a “healthy aging”

or “late disability” profiles (k = 1), to the detriment of the other profiles, as we consider

younger generations. This evidence points in the direction of a positive evolution in the

ways of aging over time, where younger people are aging more “disability free” than people

used to do in previous generations.

One limitation of this approach to assessing change is the need for long series of obser-

vations for each cohort. This problem is evident in the case of the last cohort, where we

have only measurements until the age of 78. For models with K > 2 extreme profiles, the

posterior distribution of parameters ξ corresponding to that cohort have a large spread,

which in the case of K = 4 and K = 5 makes it impossible to assess the direction of the

change with respect to the previous generation, or even if there was change at all.

The two cohorts where by design important age ranges are excluded are cohort 1, where

people are older than 76 years old and; cohort 5, with members younger than 78 years

old. Figure 5.5 and Figure 5.6 show the distribution of measured ages from these two

generations compared with the three extreme trajectories of ADL 5, for models with

K = 3 and K = 4 extreme profiles. It is interesting to note the regions in which the

extreme trajectories are well separated. While for both models cohort 1 spans regions in

which all extreme trajectories are well separated, the situation is different for cohort 5.

For a model with K = 3 extreme profiles, separation between profile k = 1 and k = 2 can

be visually assessed from age 70 (where λ2(70)− λ1(70) ≈ 0.012), and by age 78 is quite

evident (λ2(78)−λ1(78) ≈ 0.26). However, for a model with K = 4 extreme profiles, those

same differences are much smaller, i.e. λ2(70)−λ1(70) < 10−4 and λ2(78)−λ1(78) ≈ 0.029.

This explains the high uncertainty of the posterior estimates of the membership in those
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Figure 5.5: Comparison between the extreme trajectories for ADL-5 for a model with
K = 3 extreme profiles and the distribution of age coverage for generations 1 (born before
1906) and 5 (born after 1926). Although by design none of these cohorts spans the whole
interval of 65− 90 years, both include regions where the profiles are well separated.

profiles, for members of the last cohort, specially when K = 4.

The only possible “solution” to this situation within the proposed framework is to redefine

the cohorts, so that all of them include regions where the difference between the profile

curves is clear. However, at least for the model with K = 3 extreme profiles in this

application to the NLTCS data, that uncertainty is not as big to justify the loss of cohort

resolution.
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Figure 5.6: Comparison between the extreme trajectories for ADL-5 for a model with
K = 4 extreme profiles and the distribution of age coverage for generations 1 (born before
1906) and 5 (born after 1926). Different from the case of K = 3, Generation 1 does not
span a region where profiles k = 1 and k = 2 are well separated.
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Parameter Estimate
α0(5) 0.137 (0.013)
α0(4) 0.351 (0.016)
α0(3) 0.382 (0.015)
α0(2) 0.412 (0.015)
α0(1) 0.327 (0.011)

Parameter Cohort Estimate Extreme Profile-k (sd)
k = 1 k = 2

ξ

5 0.908 (0.003) 0.092 (0.003)
4 0.864 (0.004) 0.136 (0.004)
3 0.827 (0.004) 0.173 (0.004)
2 0.804 (0.004) 0.196 (0.004)
1 0.727 (0.005) 0.273 (0.005)

Parameter ADL(j) Estimate Extreme Profile-k (sd)
k = 1 k = 2

β0∗∗

1 (EAT) -6.650 (0.132) -0.518 (0.025)
2 (BED) -4.952 (0.068) 1.707 (0.052)
3 (MOB) -3.848 (0.044) 2.840 (0.087)
4 (DRS) -5.663 (0.091) 0.920 (0.038)
5 (BTH) -3.183 (0.033) 3.294 (0.101)
6 (TLT) -4.764 (0.062) 1.257 (0.044)

β1∗∗

1 (EAT) 0.293 (0.008) 0.130 (0.003)
2 (BED) 0.312 (0.005) 0.211 (0.005)
3 (MOB) 0.288 (0.004) 0.268 (0.008)
4 (DRS) 0.310 (0.007) 0.177 (0.004)
5 (BTH) 0.243 (0.003) 0.290 (0.009)
6 (TLT) 0.276 (0.005) 0.196 (0.005)

Age1/2

1 (EAT) 102.678 (0.329) 83.993 (0.239)
2 (BED) 95.898 (0.141) 71.912 (0.148)
3 (MOB) 93.382 (0.114) 69.398 (0.137)
4 (DRS) 98.249 (0.188) 74.791 (0.156)
5 (BTH) 93.110 (0.123) 68.624 (0.130)
6 (TLT) 97.237 (0.174) 73.605 (0.146)

Table 5.2: Posterior means for parameters of interest for basic model with K = 2 extreme
profiles. Numbers between parenthesis are posterior standard deviations.
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Parameter Estimate
α0(5) 0.253 (0.019)
α0(4) 0.194 (0.012)
α0(3) 0.224 (0.010)
α0(2) 0.310 (0.011)
α0(1) 0.291 (0.010)

Parameter Cohort Estimate Extreme Profile-k (sd)
k = 1 k = 2 k = 3

ξ

5 0.740 (0.021) 0.190 (0.021) 0.070 (0.003)
4 0.722 (0.007) 0.188 (0.007) 0.090 (0.003)
3 0.642 (0.007) 0.250 (0.007) 0.108 (0.003)
2 0.595 (0.007) 0.279 (0.007) 0.126 (0.003)
1 0.615 (0.006) 0.251 (0.006) 0.134 (0.005)

Parameter ADL(j) Estimate Extreme Profile-k (sd)
k = 1 k = 2 k = 3

β0∗∗

1 (EAT) -9.038 (0.364) -3.085 (0.061) -0.118 (0.043)
2 (BED) -7.115 (0.162) -1.710 (0.055) 3.533 (0.148)
3 (MOB) -5.365 (0.096) -0.733 (0.045) 5.699 (0.267)
4 (DRS) -8.042 (0.228) -2.230 (0.056) 1.999 (0.082)
5 (BTH) -4.457 (0.073) -0.205 (0.039) 6.159 (0.287)
6 (TLT) -6.638 (0.152) -1.735 (0.050) 2.457 (0.099)

β1∗∗

1 (EAT) 0.362 (0.019) 0.345 (0.009) 0.098 (0.006)
2 (BED) 0.396 (0.010) 0.540 (0.013) 0.286 (0.013)
3 (MOB) 0.347 (0.007) 0.510 (0.012) 0.419 (0.021)
4 (DRS) 0.394 (0.013) 0.454 (0.011) 0.199 (0.008)
5 (BTH) 0.292 (0.006) 0.414 (0.009) 0.438 (0.023)
6 (TLT) 0.336 (0.010) 0.465 (0.011) 0.229 (0.010)

Age1/2

1 (EAT) 104.964 (0.492) 88.956 (0.174) 81.215 (0.483)
2 (BED) 97.991 (0.176) 83.168 (0.092) 67.651 (0.184)
3 (MOB) 95.454 (0.147) 81.438 (0.086) 66.384 (0.155)
4 (DRS) 100.435 (0.242) 84.914 (0.109) 69.943 (0.204)
5 (BTH) 95.241 (0.158) 80.495 (0.094) 65.939 (0.166)
6 (TLT) 99.784 (0.246) 83.731 (0.099) 69.287 (0.185)

Table 5.3: Posterior means for parameters of interest for basic model with K = 3 extreme
profiles. Numbers between parenthesis are posterior standard deviations.
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Extreme Profiles
Age Range Pattern Observed K = 2 K = 3 K = 4 K = 5

65− 70

000000 21361 20004 20672 21070 21255
111111 295 0 12 45 177
010000 292 526 289 238 290
111110 192 6 45 109 258
000100 167 422 211 151 174
010110 117 65 103 94 67
010100 103 181 140 90 72
000110 89 101 80 58 63

70− 79

000000 34508 32177 33344 33550 33776
010000 1143 1209 1388 1223 1227
111111 1087 153 396 361 424
111110 692 406 734 723 782
000100 584 767 732 662 619
010100 412 412 334 418 407
010110 375 348 253 289 285
110110 335 359 357 372 386

79− 80

000000 15536 13423 13960 14371 14624
111111 1734 801 811 989 1160
010000 1178 1827 1339 1379 1237
111110 1018 938 1002 1068 901
000100 562 1219 869 832 712
010100 536 410 533 506 553
010110 529 265 373 354 437
110110 461 362 442 449 468

90 <

000000 1311 397 745 909 906
111111 1025 562 792 850 856
111110 529 309 358 457 462
010110 196 157 126 116 132
010000 193 295 338 315 286
010100 189 245 210 178 191
110110 158 139 113 114 129
000100 138 261 280 260 232

X2 123563 14938 7638 4646

Table 5.6: Observed and mean predictive posterior aggregated counts for the 10 most
populated response patterns by age range, for the Grouped model with K = 2, 3, 4, 5.
Within each age group the response patterns are sorted decreasingly according to observed
frequencies. For each model the X2 statistic has been computed from the complete 26× 4
contingency table.



Chapter 6

Modeling Mortality

In this chapter I present an extension of the Basic Grade of Membership Trajectory Model

that also includes the survival outcome as a response. This extension is specifically directed

at the particularities of the NLTCS but can also be generalized to other settings.

There are many reasons to undertake this task. First, in the context of studies about

disability, the study of survival times is of intrinsic interest. From a public policy point of

view, how long an individual is going to survive has a direct impact on the allocation of

resources, even more if different patterns of disability are correlated with different patterns

of mortality.

Second, disability is known to be correlated with mortality in elderly years. Whichever

the working mechanism involved is, it has been shown repeatedly that progression into

disability goes together with an increased probability of death (e.g. Ferrucci et al. 1996;

Connor 2006; White 2008). As we discussed in Section 2.1.1, because of this correlation,

103
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ignoring the missing data due to death without further consideration is a clear violation to

the Missing At Random assumption introduced in Section 2.1.1 (Rubin, 1976). This can

be very problematic since death is the most important cause of attrition from the NLTCS

sample (White, 2008).

Third, if we accept that patterns of disability and of mortality go together, information

about survival times can help to make up for scarcity of data points needed to reconstruct

certain regions of some disability patterns. For instance, consider the case of a young

non-disabled individual that appeared in just one wave of the NLTCS because of their

death. The extra information about this early death can in principle help to differentiate

this subject from other healthy individuals, with exactly the same disability outcomes,

but with longer survival times. Models that do not consider joint-estimation of survival

and disability, like the those presented in Section 2 or in Connor (2006) would assume all

these individuals exchangeable.

Kurland and Heagerty (2005) and Kurland et al. (2009) introduce a general framework

to approach the problem of longitudinal modeling with dropout caused by death that can

help to clarify this situation. Consider the longitudinal response of interest, Yi, and the

survival times, Si. Since the length of Yi is determined by Si, modeling of Yi will be

influenced by the distribution of Si, either implicitly or explicitly. In terms of modeling

we can either directly model the joint distribution of (Yi, Si), p(Xi, Si), or to propose

models for the components of the different possible factorizations of this distribution:

p(Yi, Si) = p(Yi|Si)p(Si) = p(Si|Yi)p(Yi).

Thus far, the proposed models for the disability responses the “Basic” (Chapter 2) and

“Grouped” (Chapter 4 models, have been specified for the unconditional version, p(Yi),
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which correspond to the idea of an “immortal cohort” (or several, according to models in

Chapter 4). This approach would only be adequate by itself in situations in which people

do not die during he period of study, or when the values of the response have well defined

values after death. As none of these conditions are met in the NLTCS, the estimates will

reflect the averaging of p(Yi|Si) over the underlying distribution of Si (Kurland et al.,

2009).

The approach that I take in this chapter will be to consider a full joint model for disability

and mortality, or to model p(Yi, Si), in Kurland et al. (2009) terminology). To this end,

I rely on the Grade of Membership ideas, postulating conditional independence between

disability and survival times, given the membership vector of each individual. In other

words, I use the membership vector to decouple the dependence between disability and

survival.

6.1 Modeling Mortality on the NLTCS

Analyses of the NLTCS that combine longitudinal disability patterns with mortality in-

formation have been scarce. Besides the inherent technical difficulties, this is likely due to

the lack of reliable information about death in the original NLTCS sample. As commented

in Chapter 1, researchers at Duke university seek to fill this void by linking the NLTCS

registers with the Medicare records, creating a file (CMS) with the dates of birth of all

subjects and, for those deceased, their date of death as of February, 2006 (Stallard, 2005;

Connor, 2006). This combined data file has been analyzed in Stallard (2005), Connor

(2006), White (2008) and Manton et al. (2008).
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Connor (2006) performed an analysis of patterns of mortality in the NLTCS based on

estimates of disability obtained using the Multivariate Latent Trajectory framework (see

1.3.2). To this end, he stratified the NLTCS data based on the exclusive-cluster member-

ship estimates obtained from the MVLT framework, using disability data alone. Then, con-

ditional on that stratification, he obtained within-cluster survival estimates using Kaplan-

Meier curves.

Connor’s analysis presented an interesting first approximation to the heterogeneous nature

of survival distributions and their interplay with the disability outcomes, that has some

similarities with the approach I present in the here. His methodology does, however, have

some technical shortcomings. First, although it implicitly assumes an interplay between

disability and mortality, the survival estimation is conditional on the clustering induced by

the disability outcomes alone. This has the effect, in the best case, of wasting information

that could be useful for improving the classification and, in the worst case, of biasing the

estimates by not differentiating missing data due to death from other causes. Second,

survival estimates were obtained without delayed entry correction (see Section 6.2 for

details), and rather relied on discarding data, producing loss of inferential power and risk

of selection bias.

Stallard (2005) used the sequence of GoM scores over time, obtained from his Longitudinal

GoM transition model (where GoM scores were considered as descriptions of states of

disability; see Section 1.3 in Chapter 1 for details), as covariates to plug-in into a hazards-

based model for mortality. In this way he was able to investigate the relationship between

different states of disability and the chances of survival. Similar to Connor (2006), this

estimation was performed conditional on the estimates of disability, and therefore mortality

information did not play any role in the estimates of disability. This approach was also
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taken in Manton et al. (2008), although no details about estimation were provided there.

White (2008) (see 1.3) used survival information in his analyses by explicitly modeling

death as a special –absorbing– state, among those used to represent. In this way he was

able to estimate probability transitions from specific disability states into death. The

estimations was done simultaneously with the rest of the parameters of the model, includ-

ing those that represented disability, effectively sharing information between those two

phenomena.

6.2 Practical Aspects of Modeling Mortality for NLTCS

subjects

6.2.1 Initial Considerations

By design, all subjects in the NLTCS are older than 65 years. Thus, any attempt to

estimate the distribution of ages at the time of death needs to take into consideration that

the observed survival times are conditional on the event of having survived past the age

65. This fact should not be problematic, since we are precisely interested in the survival

distribution of elderly people, this is, the conditional distribution of survival times given

that the subjects have already lived more than 65 years. From now on, any reference to

the distribution of survival times will refer to this conditional version. For instance, any

reference to the cdf of the survival distribution will be understood as

F (d) = Pr(S ≤ d|S ≥ 65).
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6.2.2 Dealing with Right Censoring

The fist difficulty that we face when trying to estimate F is that survival observations

are right-censored, meaning that not everybody will have died by the time of the last

assessment. Therefore our best knowledge of the survival outcome for those people is that

it is greater than their age at the last assessment. This is a very well known problem and

most survival analysis techniques are developed specifically to deal with it, e.g., Kalbfleisch

and Prentice (2002).

Let d∗ denote the uncensored survival time or age of a person at the time of their death

and b the last known age if the person was still alive then. Let ν be the censoring indicators

(i.e. ν = 1 if the subject is dead and ν = 0 if the subject is still alive) and d the censored

version of the age at the time of dead, i.e. d = d∗ · ν + b(1− ν). Then,

Pr[S ≤ d|ν, b, S ≥ 65] = F (d)1−ν [1− F (b)]ν .

If we assume some parametric form for the survival distribution, say Fθ = F with density

fθ(·) with respect to some convenient measure on the real line, we can easily write down

the likelihood,

L(θ|d, ν, b) =
N∏
i=1

fθ(di)1−νi [1− Fθ(bi)]νi ,

and estimate the parameters.

In principle this likelihood depends on both the density and the c.d.f. of a distribution,

but the estimation of the parameters θ is in many cases a straightforward exercise using
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a missing data approach. Considering separately the complete data likelihood,

p(d∗|θ) =
N∏
i=1

fθ(d∗i )

and the censoring mechanism

p(νi|d∗i , bi) = δ0(νi)I(bi<d
∗
i ) × δ1(νi)I(bi≥d

∗
i )

we can apply an algorithm that takes advantage of this structure, such as EM. or data

augmentation strategies such as those in Tanner (1996).

6.2.3 Dealing with left truncation

One particularity of the NLTCS dataset is that, although by design we know that all

subjects are older than 65 years, many of them entered the survey at very different ages.

This feature is specially relevant in the case of the oversampling of “oldest old”, where

people were specifically selected because of their advanced age (see Section 1.1).

If we take the näıve approach of estimating the distribution Fθ using regular survival

analysis approaches, designed just to handle right-censoring (e.g. regular Kaplan-Meier

estimators), the resulting estimates will be biased. This is due to the fact that individuals

that have entered the sample at an older age, must have already had to survive to that

age in order to be in the sample, making the data look as if surviving to late ages were

more of a common occurrence than it really is. This will produce an overestimation of the

survival probabilities at late ages.

This is a well-known situation, sometimes referred to as “delayed entry” (Hougaard, 2000;
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Kalbfleisch and Prentice, 2002), and many analysis techniques have been adapted to deal

with it (see e.g. Kalbfleisch and Prentice 2002). The basis for these solutions lies in

specifying the distribution of survival times conditional on the age of entry to the sample.

In this way we are specifying the same underlying distribution for every individual (and

therefore estimating the same set of parameters), but considering the fact that the survival

times that we observe are conditional on being greater than the age at which the individual

first entered the sample. Ignoring for the moment the censoring problem, let S be a random

variable specifying the survival time in excess of 65 years, a the age at the time of entering

the sample (this implicitly makes a ≥ 65) and fθ be the density of Fθ with respect to some

measure on the real line. Then we have that

Pr(S ≤ d|S > a) =
∫ d

a

fθ(t)
1− Fθ(a)

dt× I(d > a).

Now we can construct the correct likelihood for this sample,

L(θ|d, a) ∝
N∏
i=1

fθ(di)
1− Fθ(ai)

× I(di > ai), (6.1)

from where, at least in principle, we can estimate the underlying parameters, θ.

6.3 A Weibull model With Truncation and Delayed Entry

From a parametric estimation standpoint, the likelihood in Equation (6.1) can be compu-

tationally inconvenient, given that the parameters, θ, appear in an expression that involves

both a density, fθ(·), and its integral, Fθ(x) =
∫ x

65 fθ(x)dx. Expressions like these seldom

possess a closed form. Although this is a commonly encountered situation, and there are
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well known and more or less standard approaches like the ones described in Kalbfleisch and

Prentice (2002), the final objective of this modeling exercise is to integrate it with models

describing disability status, into a comprehensive joint model. Thus a simple parametric

specification is desirable.

A practical alternative is the use of the Weibull distribution (Weibull, 1951). The c.d.f.

of the Weibull distribution is given by the expression:

Fw(x) = Pr[X ≤ x] = 1− exp [−(βx)α] , (6.2)

and its density by

fw(x) = αβαxα−1 exp[−(xβ)α], (6.3)

for x ≥ 0. β and α are positive inverse scale and shape parameters respectively.

The Weibull distribution is a versatile unimodal distribution that can be used to model

general nonnegative random variables, similar to the well known Gamma distribution. Its

use is very extended in survival analysis in part due to its simplicity, the existence of

multiplicative closed forms for its density, survival function and hazards function, and the

fact that its hazards function is monotonic (Kalbfleisch and Prentice, 2002; Ibrahim et al.,

2001). This last property makes it a good candidate to model mortality in the NLTCS,

since hazards in elderly population are usually increasing (Stallard, 2005).

To illustrate, Figure 6.1 shows the density of a Weibull distribution for different values

of the shape parameter. Values of α < 1 specify decreasing hazards, while values α > 1,

increasing hazards (Kalbfleisch and Prentice, 2002).

If we substitute fθ(x) and Fθ in Equation (6.1) by the Weibull density (Equation 6.3) and
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Figure 6.1: Density of the Weibull distribution for different values of the shape parameter
α (β = 1).

c.d.f. (Equation 6.2), this likelihood reduces to the simple multiplicative expression:

L(β, α|d, a) =
N∏
i=1

αβαdα−1
i exp [βα(aαi − dαi )]× I(ai < bi). (6.4)

From here, we can complete a Bayesian specification by choosing priors for α and β,

with support on the interval (0,∞). Given that both α and β must be nonnegative, a

reasonably flexible specification can be obtained by making

α ∼ Gamma(aα, bα),

β ∼ Gamma(aβ, bβ).
(6.5)
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6.3.1 Estimation Using MCMC

The joint posterior of the parameters in the model specified through the likelihood in

Equation (6.4) and priors in Equation (6.5), without considering the censoring is

p(β, α|d∗, a) ∝ p(α)p(β)
N∏
i=1

αβαd∗α−1
i exp [βα(aαi − d∗αi )]× I(ai < d∗i ) (6.6)

with p(α) = Gamma(α|aα, bα), p(β) = Gamma(β|aβ, bβ).

To consider right censoring, we can apply a combination of a data-augmentation algorithm

(Tanner, 1996) and a Metropolis-Hastings algorithm to sample from the posterior of (α, β).

Such an algorithm can be implemented as follows

1. Sampling d∗i |... (Imputation Step) For all i = 1, ..., N , sample d∗i according to

d∗i =

 di if νi = 1,

Draw d∗i ∼ LTWeib(α, β, ai) if νi = 0,

where LTWeib(α, β, a) is the left-truncated (at age a) Weibull distribution, with

density

p(x|α, β, a) = αβαxα−1 exp [βα(aα − xα)] I(x > a).

To obtain a sample, d∗, from this distribution we can use a variant of the inverse

c.d.f. method (Devroye, 1986), taking advantage of the existence of closed forms for

the c.d.f. and inverse c.d.f. functions:

(a) sample u ∼ Unif (F (a|α, β), 1)

(b) make d = F−1(u|α, β) = 1
β [log(1− u)]1/α,
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where F (·) is the cdf of the Weibull distribution and F−1(·) is its inverse.

2. Sampling from (α, β)|...: From Equation (6.6), the expression for the full condi-

tional distribution of (α, β) is

p(α, β|...)

∝ p(α, β)×
N∏
i=1

LTWeib(d∗i |α, β, ai)

∝ p(α)p(β)× (αβa)N exp

[
α

N∑
i=1

log d∗i + βα
N∑
i=1

(aiα − d∗i
α)

]

∝ αaα−1 exp (−bαα)βaβ−1 exp (−bββ)× (αβa)N exp

[
α

N∑
i=1

log d∗i + βα
N∑
i=1

(aiα − d∗i
α)

]

= αN+aα−1βNα+aβ−1 exp

[
α

(
N∑
i=1

log d∗i − bα

)
+ βα

N∑
i=1

(aiα − d∗i
α)− bββ

]
.

Since this expression does not have any recognizable form, we can use the following

Metropolis-Hastings step:

(a) (proposal step) Sample a proposal value (α∗, β∗) from

logα∗ ∼ N
(
logα, σ∗2α

)
,

log β∗ ∼ N
(
log β, σ∗2β

)
.

(b) (Acceptance step) The proposal distribution is not symmetric, so we will need to

compute both the Metropolis ratio and the Hastings correction for asymmetry.
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Compute

rM =
p(α∗, β∗|....)
p(α, β|....)

=
(
α∗

α

)N+aα−1 β∗α
∗N+aβ−1

βαN+aβ−1

× exp

[
(α∗ − α)

(
N∑
i=1

log di − bα

)
+ β∗α

∗

(
N∑
i=1

(aα
∗
i − dα

∗
i )

)

− βα
(

N∑
i=1

(aαi − dαi )

)
− bβ (β∗ − β)

]
,

rH =
q(α, β|α∗, β∗)
q(α∗, β∗|α, β)

=
Lognormal(α| logα∗, σ∗2α )
Lognormal(α∗| logα, σ∗2α )

·
Lognormal(β| log β∗, σ∗2β )

Lognormal(β∗| log β, σ∗2β )

=
α∗

α

β∗

β
.

Then make

r =rM × rH

=
(
α∗

α

)N+aα β∗α
∗N+aβ

βαN+aβ

× exp

[
(α∗ − α)

(
N∑
i=1

log di − bα

)
+ β∗α

∗

(
N∑
i=1

(aα
∗
i − dα

∗
i )

)

− βα
(

N∑
i=1

(aαi − dαi )

)
− bβ (β∗ − β)

]
.

Finally, update the current value of the pair (α, β), from step m to m + 1

according to

(α, β)(m+1) =

 (α∗, β∗) with probability min{r, 1},

(α, β)(m) with probability 1−min{r, 1}.
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6.3.2 Testing the Weibull survival model with NLTCS mortality data

To test the algorithm in the previous section, I applied it to a subset of the NLTCS

consisting in 6000 randomly selected individuals. I certainly do not expect this simplistic

model to provide a realistic fit of these data. This computation exercise is just for testing

the algorithm and, in particular to evaluate how well it handles the censoring and delayed

entry. I introduce a more realistic model in the next section.

I have selected priors for α and β as

α ∼ Gamma(1, 1) and β ∼ Gamma(1, 0.1),

which can be considered diffuse, but with a realistic scale and shape to model human

survival times in excess of 65 years.

For the tuning parameters, σα and σβ, I have selected the values σα = σβ = 0.01, which

produce an acceptance rate of approximately 45% in the Metropolis-Hastings step. With

these values, the sampler converges quickly, after just 500 iterations, so I ran 10, 000 long

chains and discarded the first 1000. No subsampling was necessary.

The estimated posterior mean and standard deviation of the Weibull parameters are

α̂ (sd) = 2.20 (0.032),

β̂ (sd) = 0.0498 (0.000388).

Figure 6.1 shows the estimated posterior survival curve overlaid for comparison with the

Kaplan-Meier survival estimate without left truncation correction, and with a hazards-
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Figure 6.2: Estimated Weibull survival curve for NLTCS subjects compared with no
deleyed-entry corrected Kaplan-Meier estimate (left panel) and with hazards based es-
timate with delayed entry correction (right panel).

based estimate (Cox model without covariates, in the left panel) with delayed entry cor-

rection. We can visually assess the effect of the left truncation correction. If we take the

corrected hazards-based estimate as a benchmark, we see that not correcting for delayed

entry (Kaplan-Meier curve) has the expected effect of overestimating the probability of

survival. Comparing the hazards-based corrected curve with the Weibull model, we see

that they are very close to each other, meaning that the correction in the Weibull model

is handling the delayed entry bias at least in a comparable way. The main discrepancy in

shape between the two curves is near the origin, where the Weibull model does not show

as sharp decay as the nonparametric estimate does. This is likely due to model misspec-

ification. We have to remember the strong parametric form of the Weibull distribution,

which is a smooth curve that is uniquely determined by just two scalar parameters. A

more sophisticated approach will be necessary to correct this bias.
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6.4 Constructing a Joint Model for Mortality and Disability

The objective of this section is to construct a comprehensive probability model that can

handle both survival and disability outcomes, considering them as distinct aspects of the

same underlying processes.

To this end, I use the partial membership structure as a way of connecting both phenom-

ena. I therefore specify ideal profiles that describe the progression of survival probabilities

as well as survival probabilities. By assuming conditional independence between those

distributions given the membership vector, I make the individual membership serve as a

way of explaining the dependence structure between the two.

I begin by proposing an extension of the simple Weibull model from the previous section,

aimed to relax the strong parametric constrains imposed by the choice of the Weibull

distribution. This involves introducing an individual-level mixture structure, using GoM

scores. Then I combine it with the Basic GoM trajectory model from Chapter 2 by

letting the (sub)models for disability outcomes and the survival times to share the same

membership vector as a way of linking the two pieces.

6.4.1 A GoM version of the simple Weibull survival model

Assuming the existence of K extreme profiles, we model each of these extreme profiles

with the simple Weibull model:

p(d|gk = 1) = Weibull(d|αk, βk) (6.7)
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and then model each individual as a weighted (by the membership vector) combination of

the unique profiles:

p(di|gi) =
K∑
k=1

gikWeibull(di|αk, βk).

Again assuming independence conditional on the membership vector, we construct the

joint distribution:

p(d|g) =
N∏
i=1

K∑
k=1

gikWeibull(di|αk, βk),

which can be rewritten using a latent class representation

p(d|g) =
N∏
i=1

∑
z∈Z

K∏
k=1

(gikWeibull(di|αk, βk))I(z=k) ,

where Z = {1, 2, ...,K}. It is easy to see that this joint distribution is also the distribution

of variates generated by the following process:

1. for each i = 1, ..., N

(a) draw zi ∼ Discrete[gi1, gi2, ..., giK ],

(b) draw di ∼Weibull(αzi , βzi).

A quick derivation will show us that when we consider the membership vectors to be

samples from a common distribution, G, this specification becomes nothing else than a
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simple (constrained) mixture of Weibulls model:

p(d|θ) =
∫

∆

K∑
k=1

fk(d)G(dg)

=
∫

∆

K∑
k=1

gkWeibull(d|αk, βk)G(dg)

=
K∑
k=1

πkWeibull(d|αk, βk), (6.8)

where πk = EG[gk] is the expected value of the k-th component of g (πk = ξk, for the

Dirichlet distribution).

Although this specification may look trivial by itself (and it is nothing more than a hierar-

chical mixture model), its power will become evident when we combine it with whole tra-

jectory model, considering shared membership vectors for both the disability trajectories

and mortality, and make each component part of an extreme profile that also characterizes

disability trajectories.

Adding delayed-entry correction (Equation 6.1) to this formulation, we obtain the expres-

sion

p(di|θ, gi, ai) =
fθ(d)

1−
∫ ai

0 fθ(x)dx

=
∑K

k=1 gikWeibull(di|αk, βk)
1−

∫ ai
0

∑K
k=1 gikWeibull(x|αk, βk)dx

=
∑K

k=1 gikWeibull(di|αk, βk)∑K
k=1 gik

(
1−

∫ ai
0 Weibull(x|αk, βk)dx

) . (6.9)

This expression will not admit a latent class representation like the one in Equation (6.8),

due to the sum in the denominator. As a consequence, the estimation strategies based
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on data augmentation that we have applied previously are no longer feasible. This added

complication is an unfortunate side effect of having to perform the truncation in the mixed

distribution (i.e., after generating the variable) and not in the extreme profiles.

We obtain a compromise solution by replacing the distribution in Equation (6.9) with

p(di|gi, ai) =
K∑
k=1

gik
Weibull(di|αk, βk)

1−
∫ ai

0 Weibull(x|αk, βk)dx

=
K∑
k=1

gikLTWeib(di|αk, βk, ai), (6.10)

by truncating each extreme profile and then mixing the distributions according to the

membership scores. This expression has the advantage of being a true individual-level

mixture, and therefore to define a probability measure. In addition, it admits a latent

class representation. However, how well this surrogate expression approximates the true

intended distribution of the model is something that we will have to evaluate. I come back

to this question from an empirical point of view at the end of the next Chapter, when we

apply the model to the actual NLTCS data.

6.4.2 Combining the Basic GoM Trajectory Model and Weibull Mortal-

ity Model

My main objectives when modeling the survival distribution using the NLTCS data are:

1) to understand the mortality patterns and their relationship to the disability patterns

and 2) to supplement or complement the disability data with the survival data, in order

to achieve a better classification of the individuals. These two objectives have the implicit

requirement that, in some sense, the extreme profiles encode not only the typical disability
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curves, but also typical mortality distributions. If we proceed in this way, the prototypical

individuals described by the extreme profiles will be described by their ways of aging and

their probability of surviving by more than a given number of years.

As I outlined at the beginning of this section, for the construction of the joint model I

assume:

1. Each extreme profile specifies both the trajectories of disability and the mortality

distribution of the ideal individuals.

2. For each individual i, there is only one K-dimensional membership vector, gi, that

will apply to both the survival and the disability sub-models.

3. Given the membership vector, the survival distribution of an individual will be con-

sidered independent of their disability distribution.

The last assumption on the list is perhaps the most important. It states that the rela-

tionship between mortality and disability could be fully explained by the extreme profile

partial membership.

Making these assumptions, we can write the joint distribution of mortality and disability

conditional on the membership vector. Let hk(d) be the density of the survival distribution



6.4. Constructing a Joint Model for Mortality and Disability 123

for the extreme profile k. Then

p(yi, di|gi) = p(yi|gi)×
K∑
k=1

gikhk(di)

=

 J∏
j=1

T∏
t=1

K∑
k=1

gikfk(yijt|Xit)


︸ ︷︷ ︸

Original Basic Model

×
K∑
k=1

gikhk(di)

=
∑
z∗∈Z∗

giz′hz′(di) J∏
j=1

T∏
t=1

gizjtfzjt(yijt|Xit)

 . (6.11)

Where Z∗ = Z ′ × Z with

Z ′ = {1, 2, ...,K}

Z = {1, 2, ...,K}J×K

z∗ = (z, z′), z′ ∈ Z ′ and z ∈ Z. Comparing expression in Equation (6.11) with the

Basic model from Chapter 2 (Equation 2.5) we see that vectors z∗ ∈ Z∗ are just an

augmentation of vector in Z in Equation (2.5), with a component to accommodate the

survival sub-model.

Using Equation (6.11), we can again write the likelihood of the joint model using the

augmented data representation introduced in Chapter 2, Section 2.6:

p(y, d, z∗|g) =
K∏
k=1

(gikhk(di))
I(z′i=k) ×

J∏
j=1

T∏
t=1

K∏
k=1

[gikfk(yijt|Xit)]
I(zijt=k) . (6.12)

This representation, is the basis for the construction of the estimation algorithm. Note that

the representation in Equation (6.12) also falls into the general class of Mixed Membership
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models as described in Erosheva (2002).

6.4.3 Detailed Implementation

As I have proceeded in the previous sections, I implement this expanded model by selecting

suitable disability trajectory functions, a survival distribution and priors.

For the Basic Model section I use the exact same specification proposed for the Basic

model, this is

fk(y|Xit) = Bernoulli
[
y|p = logit−1

(
β0j|k + β1j|k ×Ageit

)]
,

with the priors

p(gi∗|α) = Dirichlet(gi∗|α1, α2, ..., αk),

p(α0) = Gamma(α0|τ, η),

p(ξ) = Dirichlet(ξ|1K) (Uniform on ∆K−1).

For the survival density function, h(·) I use the Weibull specification from Equation (6.10),

hk(di|ai) = LTWeib(di|αdk, βdk, ai),

where ai is the left truncation point, as we discussed in Section 6.2.3. Similar to the

construction of the simple Weibull model in Section 6.3, we will use the priors

αdk
iid∼ Gamma(aα, bα) and βdk

iid∼ Gamma(aβ, bβ).
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This specification does not include the handling of right censoring of survival times, which

will be considered as part of the sampling strategy in the construction of the MCMC

sampler in Section 6.4.5.

6.4.4 Missing Values

One of the objectives behind the construction of this Joint model under construction is to

handle the non-ignorability of missing data when it is due to death.

The formulation in Equation (6.12) assumes that the full T × J dimensional vector of

disability measurements is observed and available for estimation. This is certainly not

only not the case, but a logical impossibility, as in several cases it would require to obtain

disability measurements from deceased people.

To investigate the effect of ignoring the missing data under this formulation, I use a more

abstract representation of the structure of the joint model, where the main assumption,

the conditional independence of disability and survival processes, is isolated from other

considerations. For now, I ignore the values of disability responses after death.

In the most basic terms, the joint model consists of three basic groups of parameters:

the disability parameters, θd = (β0, β1); the survival parameters, θs = (βd, αd) and; the

mixed membership parameters, θc = (α, g). The joint model is based on the idea of using

the basic disability model likelihood, f(y|θd, θc), and assuming conditional independence

between these disability outcomes, y, and the survival outcomes, d, given the membership

vector, g ∈ θc. We label the model for the survival outcomes h(d|θs, θc). Then, according
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to the joint specification,

Pr(Yi = yi, Si = di|X, θd, θs, θc) = f(yi|Xi, θd, θc) · h(yi|θs, θc).

Let us now assume that there are only three reasons why a person, i, would not have a

measurement at time t. The person could be either

1. younger than 65 years (65 > Ageit) or

2. dead (di < Ageit) or

3. just happened to not have answered the survey for reasons that do not depend on

either the disability response, yi or the parameters of the model.

Note that these assumptions ignore the situation where the nonresponse depends on the

unobserved disability outcome, like when the respondent is too disabled to be able to

answer the survey. Although this might be a source of legitimate concern, this effect is

likely to not being important given the design of the NLTCS, which specifically addresses

this situation through the use of proxy respondents.

Let us define the missing data indicator for each individual as mit = I(t ∈ Mi). In the

NLTCS this is an observed random variable. With this definition, the simplest way in

which we can model the situation described in item 3 in the list of possible reasons for

not being in the sample at time t (when mit = 1) is by assuming that the non-response

indicator comes from a common distribution mit ∼ φ.

Now, let us define the set of indexes Ξi = Ξ(Xi, Si) =
{
t : Ageit ∈ [65, Si]

}
. This set

contains the indexes of the waves in which the individual i could in principle be selected.
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Then, the distribution of the missing data indicator, mit, conditional on the age covariate

and the survival time is

p(mit|Xi, Si) =δo(mit)I(t/∈Ξ)φ(mit)I(t∈Ξ)

=δo(mit)I(t/∈Ξ)φ(1)I(t∈Ξ,mit=1)φ(0)I(t∈Ξ,mit=0). (6.13)

The factorization in the last line of Equation (6.13) just expresses the idea that sometimes,

although an individual should in principle be in the sample, with probability φ(0) he or

she just happens not to be included.

Dropping the individual index for simplicity of notation, the likelihood of the joint model

considering the missing data indicator vector, mi, is

p(y,m,d|X, θd, θs, θc)

= h(d|θs, θc)
T∏
t=1

p(mt|X, d)
J∏
j=1

f(yjt|Xt, θd, θc)

= h(d|θs, θc)
∏
t∈Ξ

φ(mt)
J∏
j=1

f(yjt|Xt, θd, θc)

×∏
t/∈Ξ

δ0(mt)
J∏
j=1

f(yjt|Xt, θd, θc)


= h(d|θs, θc)

∏
t∈Mi

φ(1)
J∏
j=1

f(yjt|Xt, θd, θc)


×
∏
t/∈Mi

φ(1)I(t/∈Ξ)δ0(mt)I(t∈Ξ)
J∏
j=1

f(yjt|Xt, θd, θc)

 .
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Therefore, the likelihood of the observed data is

p(Yobs, S,M |X, θd,θs, θc)

=
∫
p(Y, S,M |X, θd, θs, θc)dYmiss

=h(S|θs, θc)
∏
t∈Mi

φ(1)
J∏
j=1

f(yjt|Xt, θd, θc)


×
∏
t/∈Mi

φ(1)I(t/∈Ξ)δ0(mt)I(t∈Ξ)
J∏
j=1

∫
f(y|Xt, θd, θc)dy


=h(S|θs, θc)

∏
t∈Mi

φ(1)
J∏
j=1

f(yjt|Xt, θd, θc)

× ∏
t/∈Mi

φ(1)I(t/∈Ξ)δ0(mt)I(t∈Ξ)

=h(S|θs, θc)

∏
t∈Mi

J∏
j=1

f(yjt|Xt, θd, θc)

× T∏
t=1

φ(mt)I(t/∈Ξ)δ0(mt)I(t∈Ξ).

Finally, considering again the individual indexes, the posterior distribution of the param-

eters is

p(θd, θs, θc|Y, S,M,X) ∝ p(θd, θs, θc)
N∏
i=1

h(Si|θs, θc)

∏
t∈Mi

J∏
j=1

f(yijt|Xt, θd, θc)


×

T∏
t=1

φ(mti)I(t/∈Ξ)δ0(mit)I(t∈Ξ)

∝ p(θd, θs, θc)
N∏
i=1

h(Si|θs, θc)
∏
t∈Mi

J∏
j=1

f(yijt|Xt, θd, θc). (6.14)

Through a similar derivation we can also show that even if we consider that the disability

response adopts a different state after death, say “*”, by enlarging its support to be

{0, 1}J ∪{∗}, we still reach a similar conclusion, provided that the three main assumptions
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are met. To do this all we have to do is to replace the model for y by

f∗(yi|Xi, θ) =
T∏
t=1

f(yi∗t|Xi, θ)I(Si>Ageit)δ∗(yi∗t)I(Si≤Ageit).

Then proceed similarly considering separately the three cases: Ageit < 65 (ineligible),

Ageit ∈ [65, Si] (possible to include in the sample), and Ageit > Si (dead).

Equation (6.14) shows that, under the stated assumptions, the joint model will take care

of the missing data without further modeling of the process. This strong result is a

consequence of the equally strong assumption of conditional independence between survival

and disability, given membership scores.

6.4.5 Posterior Estimation Using MCMC

The augmented data representation shown in Equation (6.12) allows to easily expand

the algorithm developed for the Basic Model in Chapter 2 (Section 2.2.1) to handle the

survival distribution.

Considering uncensored survival data, the posterior distribution of parameters given the

disability, survival and augmented data, and considering only the observed disability mea-

surements, as suggested by the result in the previous section, is

p(β,α, g, h|d, y, z, Age) ∝ p(β)p(α0)p (ξ)

[
N∏
i=1

p (gi∗|α)

]

×
N∏
i=1

 K∏
k=1

(
gikhk(di)

)I(z′i=k) ×
J∏
j=1

∏
t∈Mi

K∏
k=1

(
gik

exp(yijtβ0j|k + yijtβ1j|kAgeit)
1 + exp(β0j|k + β1j|kAgeit)

)I(zijt=k)
 .

(6.15)
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The expression of the posterior distribution in Equation (6.15) is similar to the one of the

Basic model in Section 2. We can thus just adapt the MCMC sampler proposed there.

We have to add steps to sample the parameters of the survival distribution and handle

the data augmentation of the survival times and z′. It will also be necessary to modify

the step for sampling g, as its full conditional distribution will have changed.

The algorithm can be implemented as follows:

1. Sampling from z′i (imputation)

z′i|... ∼ Discrete(p1, ..., pk),

where

pk ∝ gikLTWeib (di |αdk, βdk, ai ) .

2. Sampling from zijt (imputation): Same as the sampler for zijt in the Basic

model.

3. Sampling from gi: The full conditional distribution of gi is

p(gi|...) ∝
J∏
j=1

∏
t∈Mi

K∏
k=1

g
I(zijt=k)
ik ×

K∏
k=1

gik
I(z′i=k).

Therefore, gi|... ∼ Dirichlet(αgi1, α
g
i2, ..., α

g
iK), with

αgik = αk + I(z′i = k) +
∑
j,t

I(zijt = k).

4. Sampling from (β0jk, β1jk): Same as the sampler for (β0jk, β1jk) in the Basic
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model.

5. Sampling from α: Same as the sampler for α in the Basic model.

6. Sample from d∗i (Imputation) This step is similar as the corresponding one in

the sampler for the basic simple Weibull model in Section 6.3.1:

d∗i |... =

 di if νi = 0,

Draw d∗i ∼ LTWeib(αdz′i , βdz′i , bi) if νi = 1,

where the censoring indicator, νi is defined to be νi = 0 if the person was known to

be alive at the time of the survival assessment and νi = 1 otherwise.

7. Sample from (αdk, βdk) The full conditional distribution is

p(αdk, βdk|...) ∝ p(αdk, βdk)×
N∏
i=1

[
K∏
k=1

LTWeib (d∗i |αdk, βdk, ai )

]I(z′i=k)

∝ αNk+aα−1
dk β

Nkαdk+aβ−1
dk

× exp

αdk
∑
i∈Ξk

log d∗i − bα

+ βαdk
∑
i∈Ξk

(aiαdk − xiαdk)− bββdk

 ,
where Ξk = {i ∈ 1...N : z′i = k} and Nk = #Ξ.

Again, as in the algorithm in Section 6.3.1, we will use a Metropolis-Hastings step:

(a) (proposal step) Sample a proposal value (α∗, β∗) from

logα∗ ∼ N
(
logαdk, σ2

α

)
,

log β∗ ∼ N
(
log βdk, σ2

β

)
.
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(b) (Acceptance step) Compute

r′ =
p(α∗, β∗|....)
p(αdk, βdk|....)

=
(
α∗

αdk

)Nk+aα β∗α
∗Nk+aβ

β
αdkNk+aβ
dk

× exp

[
(α∗ − αdk)

(∑
i∈Ξ

log di − bα

)
+ β∗α

∗

(∑
i∈Ξ

(aα
∗
i − dα

∗
i )

)

− βαdkdk

(∑
i∈Ξ

(aαdki − dαdki )

)
− bβ (β∗ − βdk)

]
,

and update the vector (αdk, βdk) from step (m) to (m+ 1) by

(αdk, βdk)(m+‘1) =

 (α∗, β∗) with probability min{r′, 1},

(αdk, βdk)(m) with probability 1−min{r′, 1}.

6.5 Summary and Discussion

In this chapter I have presented an extension to the Basic Grade of Membership Trajectory

model aimed at joint model survival times and disability measurements. It is based on

considering a submodel for the survival outcomes, consisting in individual-level mixtures of

simple continuous distributions, and then linking it to a Basic GoM Trajectory submodel

by allowing the two submodels to share the same membership vector. I also had to

introduce corrections to the survival model in order to account for right censoring and

delayed entry.

The resulting Joint model has the advantage of re-using the Basic model and thus retaining

its interpretation and properties, and at the same time providing a way to account for the
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dependency of disability and mortality. Due to the way I have constructed the joint model,

once estimated the parameters, what we will have is a characterization of a number K of

extreme profiles that describe simultaneously typical tendencies in the aging process and

survival for ideal individuals. At the same time, similar to the Basic model, the Joint model

provides a characterization of the structure of the heterogeneity among real individuals,

by means of the estimation of the distribution of the partial membership scores in the

population.

This joint modeling is interesting for a number of reasons. First, the characterization and

study of survival times is relevant in its own right, even more if it can shed light into the

relationship between disability and mortality. Second, it allows to differentiate cases of

missing data due to death from other cases. Finally, survival times are information that

can complement and in some cases supplement disability measurements to allow for better

estimates. This is especially important for cases where there are just a few measurements,

as is the case with younger cohorts.

A relevant question related to the last point is what is the relationship between the esti-

mates using the Basic model and the joint model? Using the general notation introduced

in the discussion about the missing values, in Section 6.4.4, the likelihood of the model is

Pr(Y = y, S = d|X, θd, θs, θc) = f(y|X, θd, θc) · h(d|θs, θc).
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This means that the marginal likelihood of the joint model integrating over S is

Pr(Y = y|X, θd, θs, θc) =
∫

Pr(Y = y, S = x|X, θd, θs, θc)dx

=
∫
f(y|X, θd, θc) · h(x|θs, θc)dx

=f(y|X, θd, θc)
∫
h(x|θs, θc)dx

=f(y|X, θd, θc),

which is exactly that of the Basic model. Thus we see that the Basic model is the marginal-

ized version of the joint model. Using the basic model will produce the same results that

the joint model if we for some reason decide to average over the survival data.

Now let us see what happens when we perform inferences about the disability and common

parameters under the Joint model using the whole dataset. The posterior distribution of

all parameters given the data vector (Y, S,X) is

P (θd, θs, θc|Y, S,X) ∝P (θd, θs, θc)f(Y |X, θd, θc)h(S|θs, θc)

=P (θd)P (θs)P (θc)f(Y |X, θd, θc)h(S|θs, θc),

and therefore, the posterior distribution of the parameters that this Joint model have in
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common with the basic model is

P (θd, θc|Y, S,X) ∝
∫
P (θd, θs, θc|Y, S,X)dθs

∝
∫
P (θd)P (θs)P (θc)f(Y |X, θd, θc)h(S|θs, θc)dθs

=P (θd)P (θd)f(Y |X, θd, θc)︸ ︷︷ ︸
P (θd,θc|Y,X)

∫
h(S|θs, θc)P (θs)dθs︸ ︷︷ ︸

w(S|θc)

.

This last expression is quite revealing: the inferences that we can make with the Joint

model about the parameters (θc, θd)—those in common with the Basic model—will include

information about survival. In fact the posterior distribution of those parameters is the

one that we would have obtained from the application of the Basic model, P (θd, θc|X,Y ),

modified by a term that depends on the survival information, w(S|θd).

This analysis makes explicit the mechanism through which data is shared between the

survival and disability submodels. This sharing of data allows the use of to use survival

outcomes to complement the disability information when the latter is scarce. In this way

if, for instance, we only have one measurement for an individual, then its survival time,

even if censored, can provide extra information to help the algorithms to better classify

them with respect to the extreme profiles. Furthermore, this information also propagates

to the estimates of the disability parameters themselves, borrowing strength from other

similar individuals.

The way this effects the estimates of disability and in general the fit of the model, however,

depends on the quality of the assumptions made to build the Joint model. In particular, I

have assumed that the pure types can simultaneously describe survival and disability. This

implies that, if patterns of disability and survival do not agree, the effect of the survival
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data in the disability estimates can potentially bias those estimates.



Chapter 7

Applying the Joint

Disability-Mortality model to the

NLTCS Data

In this chapter, I apply the joint disability-survival model from Section 6 to the NLTCS

with the objective of testing the proposed methods. In particular I want to assess how

the disability estimates change with respect to those produced by the Basic model alone;

check how well the Joint model represents the survival outcomes and; to gain insight on

the relationship between disability and mortality.

137
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7.1 Preliminaries

The data for this analysis is the same sample from the NLTCS that was used with the two

previous models. In addition, I have used the survival times from the CMS file that was

originally used by Stallard (2005) and Connor (2006) in their analysis of the mortality in

the NLTCS (see Section 1.1 in Chapter 1 for details). In terms of data preparation, I have

re centered the ages at the time of death from the datafile to represent life in excess of 65,

this is, substracted 65 to the age at the time of death. This way, I can take the support of

the survival distributions to be the positive real line. I also created the indicator variable

νi that takes the value 1 if the person was alive at the time of the assessment, in 2006,

and 0 otherwise, as required for the Joint model.

For both the disability parameters, β0 and β1, and the GoM population-level parameters,

α, I have used the same prior specification as with the Basic and Generational models:

β0jk
iid∼ N(0, 100), β1jk

iid∼ N(0, 100), ξk ∼ Dirichlet(1K) and α0 ∼ Gamma(1, 5). The ap-

propriateness of this choice follows from the same considerations presented in the Basic

model case in Chapter 3. Additionally, as I want to make the estimates easily comparable,

retaining the same prior specification will allow to me focus on the differences introduced

by the model extension only.

For the survival prior distribution I have used the same parameters discussed for the

test run of the simple Weibull model presented in Section 6.3.2, following the same con-

siderations. These distributions are αdk
iid∼ Gamma(1, 1) and βdk

iid∼ Gamma(1, 0.1) for all

k = 1, ...,K.

Executing this algorithm is not very different from executing the other variants of the
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Extreme Profiles σ∗α
K = 2 0.0650
K = 3 0.0116
K = 4 0.0085
K = 5 0.0070

Table 7.1: Values of proposal standard deviation σ∗α for joint survival-disability model.

Latent Trajectories GoM model samplers. It presents the same challenges in terms of

computing time and the need to fine-tune the proposal distribution for the Metropolis-

Hastings steps. As in all the preceding cases, the proposal distribution most critically

affected by fine tuning was the one for sampling the values of α. The final tuning pa-

rameters for these proposals, for models with K = 1 to K = 5 extreme profiles, σ∗α, are

shown in Table 7.1. For the survival tuning parameters, σ∗dα and σ∗dβ, the values already

chosen for the execution of the simple Weibull model (see Section 6.3.2), σ∗dα = 0.01 and

σ∗dβ = 0.2 worked similarly well.

For all models, from K = 2 to K = 5, I have executed 100, 000 iterations, discarding the

first 20, 000 samples as a burn in period and subsampled the rest, keeping one from every

five samples and discarding the rest, to reduce the effect of the serial correlation of the

chain.

7.2 Results

I have computed the posterior distribution of the parameters for models with K = 2 to

K = 5 extreme profiles. Besides the population-level membership parameters, α0 and ξ,

the trajectory parameters, β0jk and β1jk, the survival parameters αdk and βdk and the

summary Age1/2, these tables also display the summary posterior Agesrv,k. This quantity
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is defined as the median survival age, in years since birth, of an ideal individual in profile

k:

Agesrv,k =
1
βdk

[
log 2

]1/αdk + 65. (7.1)

I give posterior summaries of these parameters (posterior means and standard deviations)

in Tables 7.4 to 7.6 in Appendix 7.A, at the end of this Chapter.

Figures 7.1 to 7.3 show the estimated trajectory functions for each combination of extreme

profile and ADL, overlaid with the estimated profile’s posterior survival function.

The first thing to note in these estimates is that they are similar to those obtained using the

Basic model. They too define extreme profiles that, ordered decreasingly by the estimate

of the component ξk, also reflect an increasing tendency to acquire disabilities earlier in

life, as we consider profiles with lower and lower values of ξk.

The profiles themselves look quite sound, with survival curves that match the disability

trajectories: profiles that imply a late onset of disability (e.g., k = 1, for model with

K = 3) also have associated survival curves with long expected survival times, while

profiles that reflect early frailty (e.g., k = 3 for model with K = 3) imply shorter survival

times. The estimates of αdk are all greater than 1, for all models, showing increasing

hazards as subjects age.

The population-level membership vector distribution parameters, ξ and α0 are also very

similar to the ones computed using the Basic Model, although the Joint model tends to

put more weight (greater ξk) into profiles with late onset of disability, while at the same

time it increases the mixing of extreme profiles—expressed through a larger value of α0.

This effect is likely due to the added complexity of the response, that now includes the
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survival in addition to the disability.

Comparing the trajectories of disability obtained with the Joint model with those obtained

from the Basic models, (see Figure 7.4, for a comparison with models with K = 3), we

see that all trajectories from the Joint model are shifted to the left. We can reach the

same conclusion by comparing the corresponding posterior summaries Age1/2,jk (see tables

7.4 to 7.6 in Appendix 7.A) which, under the Joint model, are all smaller than their

corresponding ones under the Basic model.

While these differences may have been expected, given that the posterior estimates in

the Joint model are, even for disability responses, including information from the survival

response, it is noteworthy that these differences are so systematic. To understand this,

we have to consider that while ADLs are merely indicators of a latent process, death is

a clear a non reversible event and therefore introduces high quality information into the

estimation process. Nonetheless, we still have to evaluate whether these changes could be

considered an improvement or not. This can be assessed by the analysis of the predictive

qualities of the Joint model.

Table 7.2 presents posterior predictive counts of the disability response, computed in a

similar way as Tables 3.6 and 5.6 in their respective Chapters. The comparison with the

basic model is quite instructive. Using the X2 statistic computed from the contingency

tables as a comparison reference (see Table 7.3 for a quick comparison table), we can see

that the Joint model has in general a disability fit comparable with a Basic model with

one extra extreme profile. Thus the fit of the Joint model to disability responses data

can be considered as a remarkable improvement on the fit obtained by means of the Basic

model alone.
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Extreme Profiles
Age Range Pattern Observed K = 2 K = 3 K = 4

65− 70

000000 21361 20128 21143 21196
111111 295 4 89 217
010000 292 475 256 324
111110 192 25 184 257
000100 167 366 161 214
010110 117 96 97 76
010100 103 170 86 87
000110 89 93 65 65

70− 79

000000 34508 32836 32800 33513
010000 1143 1317 1533 1382
111111 1087 377 527 559
111110 692 713 732 820
000100 584 772 931 746
010100 412 338 483 403
010110 375 316 271 262
110110 335 386 249 316

79− 80

000000 15536 12695 13911 14073
111111 1734 934 950 1006
010000 1178 2115 1535 1396
111110 1018 789 1004 923
000100 562 1486 1012 894
010100 536 489 390 497
010110 529 242 320 394
110110 461 241 414 443

90 <

000000 1311 258 478 595
111111 1025 386 574 682
111110 529 276 281 313
010110 196 176 152 145
010000 193 240 318 320
010100 189 239 244 229
110110 158 167 137 133
000100 138 217 271 267

X2 36562 9227 6288

Table 7.2: Observed and mean predictive posterior aggregated counts for the 10 most
populated response patterns by age range, for basic model with K = 2, 3, 4, 5. Within each
age group the response patterns are sorted decreasingly according to observed frequencies.
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Model K = 2 K = 3 K = 4
Basic 141,970 15,343 4,638
Joint 36,562 9,272 6,288

Table 7.3: Comparison between fit summary (X2 statistic computed from posterior pre-
dictive disability response counts stratified by age categories) of Basic and Joint model for
different values of K.

70 80 90 100 110

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Age

Joint GoM
Non−param.

Figure 7.5: Estimated population-level survival curve for the joint model with K = 3
extreme profiles, compared with a non-parametric hazards based estimate as reference.
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These results show that the inclusion of the survival information is in fact helping to

obtain better predictions of disability, as I had conjectured in Section 6. This effect is

not at all obvious. We have to bear in mind that the Joint model itself is forcing the

membership vector to explain not only disability but also survival heterogeneity. This

effect also shows that the hypothesized relationship between disability and survival, with

both being considered as expressions of a same underlying process summarized by the

membership vector, is at least fruitful in terms of allowing to share information between

these phenomena.

To give an idea of the survival prediction fit, Figure 7.5 shows the estimated population-

level posterior survival distribution, overlaid for comparison with a nonparametric survival

estimate with censoring and delayed entry correction, similar to the one in Figure 6.2 in

Chapter 6. Visually we can appreciate that the posterior curve of the joint model is indeed

very close to the nonparametric estimate (which does not use the disability information).

We can also note that it behaves better than the Weibull model from Section 6.3.2 near

the origin, likely due to the increased flexibility of the representation, by the introduction

of the mixed membership apparatus.

7.3 Evaluating the Survival Truncation Approximation

When we discussed the construction of the Joint Model in the previous chapter, it became

clear that using the true form of the left truncated version of the survival response under

the GoM Weibull model from Section 6.4.1,

p(di|gi, ai) =
∑K

k=1 gikWeibull(di|αk, βk)∑K
k=1 gik

(
1−

∫ ai
0 Weibull(x|αk, βk)dx

) , (7.2)
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needed to perform the delayed entry correction would make the final expression too com-

plex for estimation. Then I suggested to replace it with the expression

p′(di|gi, ai) =
K∑
k=1

gik
Weibull(di|αk, βk)

1−
∫ ai

0 Weibull(x|αk, βk)dx
, (7.3)

that corresponds to the operation of truncating each component individually and then

performing the mixing of components using the individual membership vector, gi. These

two expressions are in general different, but they become equal if the membership vector

expresses full membership in any of the extreme profiles (i.e. gk = 1 for some k). Thus we

can expect them to be approximately equal if the membership vectors tend to be closer

to one particular component. This seems to be the case, given the small estimates of the

population-level membership concentration parameter, α0.

Figure 7.6 shows a comparison between the densities evaluated using the true expression

(Equation 7.2) and the approximation (Equation 7.3). These values were computed using

the posterior mean estimates of αdk and βdk and, from a sample of 1,000 individuals, the

entry ages ai and posterior predictive survival times, di (K = 3). In this way the most

frequent cases should be represented. The comparison confirms the conjecture. Most of

the points fall into the diagonal line, showing that for those individuals the approximation

is working quite well. There are some points for which the discrepancy can be higher

(although not extreme), and in general the approximation tends to overestimate the true

expression. However, this occurs in just a small fraction of cases.

This evidence is of course not conclusive and has to be evaluated in combination with the

rest of the results. While it certainly could be the case that the use of the approximation

is already driving the algorithm to move along regions in the parameter space that make
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Figure 7.6: True value of the truncated mixed membership survival density (Equation 6.9)
evaluated at the posterior expected time of death Vs. surrogate approximation (Equa-
tion 6.10) for 1000 random individuals from the sample. Model fitted with K = 3 extreme
profiles.

the discussed comparison look better than it should, we must also bear in mind that 1)

the estimates are quite sound and in terms of prediction are in fact an improvement over

the previous models and 2) the estimated survival curve is perfectly comparable to the

one computed using a nonparametric approach that also handles left truncation.

7.4 Understanding the Trajectory Profiles: Using Step Tra-

jectories with the Joint Model

As we discussed in Chapter 3, in Section 3.3, we can gain some insight into the underlying

tendencies of aging by using a less constrained specification for the extreme trajectories.

To this end, I have implemented a version of the Joint model using piecewise constant
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(“step”) functions, similar to the one proposed in Chapter 2.3 and applied in Chapter 3.3.

I have used almost the exact specification as in the discrete trajectories variant of the Basic

model, in Chapter 3, in particular the same breakpoints, c1 = 68, c2 = 71, c3 = 74, c4 =

77, c5 = 80, c6 = 83, c7 = 86, and flat priors for the steps of the extreme trajectories.

The specification for the survival distribution was exactly the same as with the Joint

model, using the GoM Weibull model with right-censoring and left-truncation correction.

I estimated all the parameters of the model simultaneously.

Figure 7.7 shows a graphical representation of the estimated trajectory functions for each

extreme profile, for a model with K = 3. The trajectories are superposed with the

estimated survival curve of each corresponding extreme profile. The rest of the estimates

are very similar to those obtained with the Joint model with continuous trajectories.

One thing that we observed when applying the discrete trajectories to the NLTCS data

using the Basic model, was that the continuous and discrete trajectories were very similar,

except in the less predominant profiles, where in both versions trajectories tended to

behave erratically. Interestingly enough, the situation with the Joint model is similar.

Discrete step trajectories are very similar to the continuous ones, except in the last extreme

profile k = 3, where starting around age 83, they exhibit a behavior that can be qualified

as erratic.

The inspection of the mortality characterization of profile k = 3 seems to confirm the

conjecture introduced in Section 3.3: less dominant profiles, that are also profiles with

earlier onset of disability, are also characterized by earlier mortality. This means that

individuals that are mostly described by traits from those profiles also tend to die earlier,

providing little data to estimate disability at late ages. In Figure 7.7 this situation is
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evident. According to the estimates, the probability of surviving past age 83 for members

of the k = 3 extreme profile is just Pr(S > 83|gi3 = 1) = 0.00922, while the probability of

the same event for members of profiles k = 1 and k = 2 is 0.557 and 0.287, respectively.

From a practical perspective, the results from this analysis suggest that the specification

of strongly parametrized trajectories, like the monotone continuous curves proposed by

Connor (2006) and also applied here, actually helps to obtain better estimates. These

specifications have the net effect of using the data from regions where it is abundant

to estimate the corresponding parameters, and then to extrapolate those tendencies into

regions with a scarcity of data points. The similarities of the trajectories estimated in

this section (step functions; Figure 7.7) and those obtained through the use of continuous

parametric curves provide a good indication that the chosen parametric curves are an

adequate choice.
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7.5 Discussion

The application of the joint disability-survival models introduced in Chapter 6 to the

NLTCS data produced results that are interesting in several accounts. In the first place,

they provide a better picture of the main tendencies in the population, by complementing

the extreme profiles with descriptions of mortality. This way, the inspection of those joint

profiles shows that in the NLTCS, patterns of mortality are correlated with patterns of

disability in a regular way: profiles that express “healthy aging” go together with long

survival times, while profiles that express earlier increases in the probabilities of disability

go together with higher probabilities of death at younger ages.

The way I have set up the models, with the survival outcomes as an extension of the

response vector that also include the longitudinal disability outcomes, adds some inter-

esting features to this analysis. As I had discussed in Chapter 6, the inclusion of the

survival response was expected to affect the disability estimates, but not necessarily for

good. By postulating a joint dependence between disability and mortality, these models

are effectively sharing data between these two phenomena to estimate a common pool of

parameters. I had hypothesized that, if the relationship between disability and survival

was adequately described by the model, the joint estimation was going to improve both

the disability estimates and the mixed membership classification.

This was indeed the case. Comparing the predictive capabilities of the Joint model to

those of the Basic model I have found that, while in general terms they produce similar

estimates, the Joint model produced better posterior predictive estimates of the disability

outcomes. This means that survival data can in fact be used to complement disability data,

helping to take care of missing data due to death and allowing to differentiate individuals



7.A. Appendix - Posterior Summaries 155

for whom the disability information is scarce.

As I showed in Chapter 6, Section 6.5, survival data also propagates to the estimates of the

disability parameters. This was verified empirically as a shift to the left of all estimated

extreme trajectories of disability, with respect to those estimated by means of the Basic

model alone. This effect was almost exactly the same for all extreme trajectories, in all the

fitted models. This fact, together with the improvement achieved in predictive capabilities,

suggests that the inclusion of survival information is helping to reduce a bias of the Basic

model, likely to be consequence of the non-ignorability of missing data due to death (see

Section 6.4.4 in Chapter 6 for details).

7.A Appendix - Posterior Summaries
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Parameter Estimate
α0 0.599 (0.016)

Parameter ADL(j) Estimate Extreme Profile-k (sd)
k = 1 k = 2

ξ – 0.880 (0.002) 0.120 (0.002)
αd – 2.509 (0.013) 1.533 (0.061)
βd – 0.047 (0.000) 0.127 (0.007)

β0∗∗

1 (EAT) -6.120 (0.100) 0.146 (0.037)
2 (BED) -4.393 (0.052) 3.748 (0.157)
3 (MOB) -3.411 (0.035) 6.148 (0.296)
4 (DRS) -5.057 (0.068) 2.269 (0.086)
5 (BTH) -2.859 (0.027) 7.134 (0.386)
6 (TLT) -4.338 (0.050) 2.871 (0.113)

β1∗∗

1 (EAT) 0.295 (0.007) 0.157 (0.005)
2 (BED) 0.301 (0.005) 0.323 (0.013)
3 (MOB) 0.277 (0.004) 0.472 (0.023)
4 (DRS) 0.303 (0.005) 0.244 (0.008)
5 (BTH) 0.239 (0.003) 0.528 (0.029)
6 (TLT) 0.276 (0.004) 0.286 (0.010)

Age1/2

1 (EAT) 100.747 (0.230) 79.073 (0.224)
2 (BED) 94.618 (0.119) 68.409 (0.165)
3 (MOB) 92.308 (0.099) 66.960 (0.135)
4 (DRS) 96.671 (0.142) 70.691 (0.181)
5 (BTH) 91.958 (0.104) 66.498 (0.131)
6 (TLT) 95.726 (0.138) 69.963 (0.164)

Agesrv – 83.299 (0.000) 71.177 (0.007)

Table 7.4: Posterior means for parameters of interest for survival model with K = 2
extreme profiles. Numbers between parenthesis are posterior standard deviations.
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Parameter Estimate
α0 0.385 (0.011)

Parameter ADL(j) Estimate Extreme Profile-k (sd)
k = 1 k = 2 k = 3

ξ – 0.751 (0.007) 0.194 (0.006) 0.055 (0.001)
αd – 2.550 (0.017) 2.383 (0.046) 1.515 (0.063)
βd – 0.045 (0.000) 0.061 (0.001) 0.154 (0.008)

β0∗∗

1 (EAT) -7.688 (0.204) -1.760 (0.061) 0.369 (0.086)
2 (BED) -5.832 (0.109) 0.363 (0.092) 11.302 (1.389)
3 (MOB) -4.469 (0.071) 1.195 (0.093) 16.407 (1.926)
4 (DRS) -6.646 (0.137) -0.402 (0.079) 4.745 (0.400)
5 (BTH) -3.747 (0.058) 1.515 (0.089) 24.326 (4.065)
6 (TLT) -5.605 (0.101) 0.064 (0.081) 5.533 (0.435)

β1∗∗

1 (EAT) 0.345 (0.011) 0.343 (0.009) 0.081 (0.010)
2 (BED) 0.362 (0.007) 0.542 (0.015) 0.748 (0.102)
3 (MOB) 0.325 (0.005) 0.497 (0.013) 1.049 (0.140)
4 (DRS) 0.366 (0.009) 0.474 (0.013) 0.323 (0.032)
5 (BTH) 0.279 (0.005) 0.442 (0.010) 1.578 (0.287)
6 (TLT) 0.322 (0.007) 0.490 (0.013) 0.376 (0.034)

Age1/2

1 (EAT) 102.313 (0.301) 85.130 (0.199) 75.461 (0.670)
2 (BED) 96.121 (0.142) 79.332 (0.163) 64.858 (0.307)
3 (MOB) 93.748 (0.124) 77.595 (0.165) 64.320 (0.401)
4 (DRS) 98.181 (0.175) 80.850 (0.175) 65.283 (0.383)
5 (BTH) 93.415 (0.131) 76.574 (0.169) 64.536 (0.365)
6 (TLT) 97.397 (0.174) 79.872 (0.165) 65.278 (0.337)

Agesrv – 84.095 (0.000) 79.117 (0.001) 70.103 (0.008)

Table 7.5: Posterior means for parameters of interest for survival model with K = 3
extreme profiles. Numbers between parenthesis are posterior standard deviations.
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Chapter 8

Summary and Future Work

In this thesis I introduce a new family of models, the Grade of Membership Trajectory

models, that are specially well suited to characterize and analyze typical multivariate

trends of binary—or categorical by extension—responses over time, while at the same time

allowing for complex forms of individual heterogeneity in the population. These models

handle the individual heterogeneity using the concept of partial membership: assuming the

existence of a small number of ideal types or extreme profiles and letting each individual

to partially belong to each pure type, in different degrees. To model the general trends

over time, these models start by characterizing the ideal individuals (exclusive members

of the extreme profiles), using “extreme trajectories”: curves that describe the underlying

probabilities of having positive outcomes in each component of the response as a function

of time, for each extreme profile. Then, the description of the real progressions over

time for the non-ideal (or real) individuals is constructed by combining those extreme

trajectories, weighting them by the degree of membership of the individual within the

159
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corresponding profile. This way, each individual can follow a different trajectory over

time, but this trajectory can be described as a combination of the population-level defined

extreme profiles.

This development was motivated by an interest in analyzing disability patterns in elder

Americans using the NLTCS. This way, I used the extreme trajectories to represent the

evolution of the extreme tendencies in the probability of acquiring specific disabilities as

the individual ages. I used the mixed membership apparatus to characterize the population

heterogeneity, looking for flexibility to allow for different and personal ways of aging.

8.1 Contributions

The development of these models and the associated methods for estimation are a contri-

bution to the current literature on Mixed Membership models, in particular the Grade of

Membership model (Woodbury et al., 1978; Manton et al., 1994; Erosheva et al., 2007),

extending this family by introducing covariates into the extreme profile characterizations.

At the same time, they can be considered as another layer of sophistication on the Multi-

variate Latent Trajectory models (Connor, 2006), replacing the exclusive clustering of the

population with a more flexible soft-clustering, using mixed membership ideas.

I have also developed two main extensions to this basic idea, both aimed at providing

insights into the general topic of disability of elderly people in the U.S. using the available

data from the NLTCS. The first one directed at answering questions about the differences

in the ways of aging across different generations (“Do younger generations acquire disabil-

ities in a different way than older ones?”). I framed the problem extending the models,
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introducing cohort information (the generational group of each individual) as a covariate

that affected the membership distribution. This way, differences between generations could

be read as differences in the way that the cohort information affected the membership dis-

tribution, using the extreme profiles as a common reference frame. This approach is an

instance of the more general idea of including covariate information into the population-

level membership distribution, and it can be used to handle other stratifications of the

population, including those introduced by unequal probability sampling.

The second extension incorporates information about survival times, combining it with

disability outcomes. It is particularly relevant for analyzing data from the NLTCS be-

cause disability and mortality in advanced ages are phenomena that are interrelated and

the joint modeling helps to understand the relationship between them. In technical terms,

the extension is interesting for several reasons: it combines categorical and continuous

outcomes into a complex multidimensional response vector, using a common mixed mem-

bership framework; it shows how to incorporate nontrivial sampling issues related (but not

limited) to the characteristics of survival-time data, like delayed entry (left truncation)

and right censoring; it presents a simple way for accounting for missing values due to death

and; it shows how we can use complementary information (survival data) to enhance the

estimation of both the mixed membership distribution and the parameters that directly

model the disability outcomes, through simultaneous inference.

In terms of estimation, I have developed a series of algorithms based on Markov Chain

Monte Carlo sampling that extend the one introduced in Erosheva (2002) and Erosheva

et al. (2007). These algorithms are based on an equivalent Latent Class representation

of the GoM model first proposed in Haberman (1995) and fully developed in Erosheva

(2002) and Erosheva et al. (2007). I have developed algorithms and variants for each of
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the models proposed and showed them in action by fitting the models to the NLTCS data.

In terms of the motivating problem, this work contributes a new set of tools and methods

to the still small body of research about disability of elderly people in the United States

through the use of longitudinal methods applied to the NLTCS data (Stallard, 2005;

Connor, 2006; White, 2008; Manton et al., 2008). Different from other studies in the

past, that have relied on the analysis of the waves of the NLTCS as a set of uncorrelated

samples (see, e.g., Manton et al. 1997, 2006, 2007), the methods I introduce here use the

longitudinal data structure present in the NLTCS, consisting of sequential measurements

of the same individuals over time. This added complexity enables the data analysts to

draw conclusions at the level of individual change over time.

Applying the Basic GoM Trajectory model to the NLTCS data (Chapter 3), I have shown

how general tendencies of the aging of Americans can be effectively modeled as monotone

increasing extreme trajectories and how the general population can be characterized by

combinations of these profiles. The introduction of the mixed membership apparatus

helps us to keep a relatively small number of extreme profiles while still allowing the

representation of complex trajectories. I have also shown that most individuals tend to be

closer to profiles that describe a late onset of disability and that, as we consider profiles that

describe an earlier onset of disability, they are less predominant in the general population.

Using the Grouped data extension (Chapter 5), I have been able to provide evidence

supporting a decline in disability in elder Americans over time: I have shown that, as we

consider younger generations, the individuals that belong to these tend to be closer and

closer to a profile that describes a very late onset of disability. This analysis separates the

effect of the age of the individuals from their dates of birth, focusing on their ways of aging,
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conditional on their cohort, rather than on pure populational prevalences. Prevalences can

also be estimated integrating the estimated conditional distribution of membership with

respect to the distribution of cohorts in the population, using supplemental data from, for

instance, the Census or Medicare records.

It is worth noting that this cohort analysis provides, from an alternative perspective to

existing studies, new evidence supporting a general decline in disability in U.S. elders over

time. Decline of disability prevalence was already observed from cross-sectional (uncor-

related) estimates (Manton et al., 1997, 2006) and wave to wave latent class transitions

(White, 2008). Connor (2006) also presents results pointing inthe same direction, from a

similar perspective to mine, using trajectory estimates.

The application of the Joint survival-disability model extension (Chapter 7) shows that

the inclusion of the mortality information has the effect of improving the quality of the

estimates of disability. This fact alone would be enough justification for the added com-

plication of performing the joint estimation. Additionally, this analysis shows that profiles

that express an early onset of disability are also characterized by higher death probabilities.

Although I have limited the analysis to the obvious features of the combined disability-

survival profiles and the distribution of the population with respect to those profiles, the

proposed method actually reconstructs a joint probability distribution of disability and

survival. These estimates can potentially provide answers to more complex public policy

questions, like conditional probabilities of death given particular disability combinations.

8.2 Directions for Future Work

1. Combining the Grouped and Survival extensions:
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After developing two extensions to the Basic GoM Trajectory model to account

for two independently relevant aspects on the study of disability, the obvious next

step is to combine them together into a general model that takes those two aspects

into consideration simultaneously. Such an extension would actually be very sim-

ple to create, based on the work already done on the Grouped (Chapter 4) and

Joint Survival-Disability (Chapter 6) models. As these extensions affect relatively

independent parts of the Basic model, it is possible to derive an MCMC sampler

for a combined model basically reusing and combining the already proposed steps

for those two variants. A model like this would more accurately determine the ex-

treme trajectories and group membership, by borrowing strength from the survival

outcomes and therefore would provide more reliable estimates.

2. Including other Covariates

Some authors (see e.g. White 2008; Manton 2008) have pointed out that certain

health-related events that evolve over time, for instance acquiring Alzheimer’s de-

cease or arthritis, are strong predictors of disability. The NLTCS includes measure-

ments of several of these potentially relevant events. Although it can be argued

that events whose probability increases with age, like the ones mentioned, can be

implicitly accounted for in the extreme trajectory definitions, it seems fruitful to

explore forms of accounting for them explicitly, either as covariates or as responses.

This can help obtain better estimates, like in the case of the simultaneous modeling

of survival and disability, and/or to study the interaction between these factors and

disability.

There are other potentially relevant static characteristics of the individuals that

could also be fruitfully incorporated into the models. An obvious candidate is sex,
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as it has been shown repeatedly that men and women follow different aging and

mortality processes (see e.g. Ferrucci et al. 1996; Connor 2006; Manton et al. 2008).

One way of incorporating these covariates is to directly use the Grouped model

(Section 4), partitioning the population according to the cartesian product of the

discrete (or discretized) covariates.

3. Including the IADLs

All the analyses performed using data from the NLTCS in this thesis have been done

using only the six ADLs. Extending the models and estimation techniques to account

for the IADLs should, in principle, be a straightforward exercise if we consider ADLs

and IADLs exchangeable. However, even under this simplifying assumption, since

no IADL measurements are registered for institutionalized individuals, we still must

account for the missing data somehow. One way of doing it is to model explicitly

the censoring process and use a data-augmentation algorithm, such as the ones in

(Tanner, 1996), for estimation.

4. Period analysis

Although I have intentionally not considered period effects into my analyses, choosing

instead to explain all temporal variability as a combination of age and cohort effects

(see Chapter 4), there are good reasons to consider at least some form of period

effects. Medical breakthroughs and changes in public policy affect all individuals

simultaneously—although not necessarily in the same way—regardless of their age

or cohort (Manton et al., 2008). Additionally, important public policy questions can

only be answered satisfactorily by some form of period analysis, specially when they

refer to the evaluation of the effectivity of interventions or changes in public policy.
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5. Model Selection:

The problem of determining the optimal number of components (K) is common to

all latent structure models. The models presented in this thesis are no exception and

the problem of choosing the “right” number of extreme profiles remains open. In my

analyses I have addressed these issues in a rather informal way, by comparing the

models’ fit using summaries of posterior predictive responses and qualitative consid-

erations in the context of the problem. While I do believe that for this particular

problem this approach provides a good insight into the problem, a more systematic

way of performing this selection would be desirable. Some alternatives that have

been used in the past with Mixed Membership models, although not in longitudinal

settings, include the evaluation indexes that balance goodness of fit and complexity

such as BIC, AIC, or DIC (Erosheva et al., 2007).

Other alternatives, from a purely Bayesian standpoint, include the estimation of

posterior model distributions through the use of algorithms such as the Reversible

Jump Markov Chain Monte Carlo (Green, 1995). Additionally, non-parametric tech-

niques, such as the Dirichlet Process priors (Ferguson, 1973; Airoldi et al., 2007) can

also be considered.

6. Other computing strategies:

In this thesis I have developed estimation techniques based on Markov Chain Monte

Carlo sampling. These methods have many advantages including computational

tractability and the generation of estimates for the whole joint posterior distribu-

tion, instead of simple point estimates. They can, however, require huge amount of

computing power, as each iteration of the Basic model is required to generate and

keep track of a latent space of more than N × T × J parameters (in the order of
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1, 260, 000, in this application). This can be very slow, taking in the order of days to

complete the computations for each single model in this thesis. While in this appli-

cation computing times are not really critical, as we are not faced with a continuous

flow of new data, computing power requirements limit their scalability. For these

models to be useful in other applications, faster and less resource-consuming algo-

rithms would be desirable. Estimation algorithms based on the idea of mean field

variational inference have been applied successfully on similar problems, although

not longitudinal (Airoldi et al., 2008; Blei and Lafferty, 2007; Erosheva et al., 2007),

and could be adapted to work in this framework.

7. Longitudinal Dependence:

My models do not explicitly account for serial correlation. Although some form of

temporal correlation is accounted for by the membership scores, specifically through

the assumption of conditional independence given membership scores, we have to

bear in mind that those same membership scores are also being used to model the

dependence between response components (the different ADLs). Thus explicit mod-

eling of the serial correlation, by different means, would be desirable.

Additionally, when posed in full generality, the problem of the serial correlation in

this context can be extremely complicated, given the continuous nature of the aging

process, opposed to the discrete nature of measurements through survey waves. One

question to be answered is if the serial dependence is actually relevant, given the

wide measurement intervals (2 and 5 years).

8. Complex sample design considerations:

The NLTCS has a complex sampling design, including stratification, clustering and

a complex enrollment (Clark, 1998). Part of the enrollment design problems has
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already being accounted for, by conditioning on the age of the subjects. There

are, however, a number of characteristics that have been used to define sampling

strata that can potentially be correlated with different ways of aging, like geographic

location, that can be considered a proxy for socioeconomic condition and for exposure

to different types of weather. Stratified sampling based on these characteristics can

potentially bias the estimates of the population-level distribution of membership. A

simple way of incorporating this information is as covariates, using the Grouped data

model, from Chapter 4. Then, using external information about the distribution of

those covariates in the population, we can integrate them out to get an unconditional

model.
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