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AbstractWe develop methods for analyzing discrete multivariate
longitudinal data and apply them to functional disability data on
U.S. elderly population from the National Long Term Care Survey
(NLTCS), 1982-2004. Our models build on a mixed membership
framework, in which individuals are allowed multiple membership on
a set of extreme profiles characterized by time-dependent trajectories
of progression into disability. We also develop an extension that
allows us to incorporate birth-cohort effects, in order to assess inter-
generational changes. Applying these methods we find that most
individuals follow trajectories that imply a late onset of disability,
and that younger cohorts tend to develop disabilities at a later stage
in life compared to their elders.

1. Introduction. This paper introduces new models and estimation
procedures to analyze discrete multivariate longitudinal data on functional
disability, motivated by the analysis of data from the National Long Term
Care Survey (NLTCS). The NLTCS is a longitudinal panel survey instru-
ment aimed at assessing chronic disability among the elderly (65+) pop-
ulation in the United States. It enables researchers to answer important
questions related to the aging process and disability prevalence in the U.S.:
How many elder Americans will live with disabilities? What is the of du-
ration of disability episodes? What is the age of onset of disability? Is
the nature of disability changing for younger generations? (Connor et al.,
2006). Answers to these questions are of importance in public policy design
due to, among other reasons, the increased public and private expenditure
for disabled people in contrast with their able peers (Manton, Lamb and
Gu, 2007).

Many of the relevant public policy questions for which the NLTCS can
potentially provide answers are related to changes over time: changes during
the life of an individual (how is this individual likely to age?), or compar-
ing people across different generations (are people from later generations
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2 D. MANRIQUE-VALLIER

acquiring disabilities differently than people born 20 years before?”). Thus,
to answer these questions we need to consider the longitudinal dimension of
these data. In addition, as not everyone could be expected to age the exact
same way, it is safe to assume that elderly American people constitute a
heterogeneous population. Models for longitudinal disability data need to
be capable of accounting for such heterogeneity.

Although the longitudinal nature of the NLTCS data is frequently invoked
(e.g. Corder and Manton, 1991; Manton, Corder and Stallard, 1997; Man-
ton, Gu and Lamb, 2006), efforts to analyze the data using true longitudinal
methods have been few and far between. Most researchers have instead ana-
lyzed the NLTCS as a series of uncorrelated cross sectional samples (see e.g.
Manton, Corder and Stallard, 1997; Manton, Gu and Lamb, 2006; Manton,
Lamb and Gu, 2007). Recent attempts to deal with the longitudinal nature
of the NLTCS have been undertaken by Stallard (2005), Connor (2006) and
White and Erosheva (2013).

The new models and methods that we propose in this paper, which we
call Trajectory Grade of Membership models (TGoM), seek to capture both
the longitudinal nature of the individual NLTCS data, and the inherent in-
dividual heterogeneity of the aging process. These models handle individual
heterogeneity using the concept of Mixed Membership (Erosheva, Fienberg
and Lafferty, 2004; Erosheva and Fienberg, 2005). Mixed Membership mod-
els describe a small number of ideal types of individuals (or extreme profiles)
and let each individual partially belong to each pure type, to a different de-
gree. At the same time, TGoM models focus on the longitudinal nature
of the process by defining the extreme profiles as typical progressions over
time. We also introduce an extension to this model aimed at capturing
differences across generational cohorts. We do this by allowing individuals’
mixed membership to depend on their dates of birth.

The remainder of this article is organized as follows. In the next sec-
tion, we present a brief introduction and description of the National Long
Term Survey. Next, in Section 3, we describe the basic TGoM model and
its extension to handle generational cohorts. Estimation algorithms based
on MCMC sampling are introduced in Section 4 and fully described in ap-
pendices A and B. In Section 5 we apply the TGoM models to the NLTCS.
Finally, in Section 6, we conclude with a discussion on the insights provided
by the models, their limitations, and possible extensions.

2. The National Long Term Care Survey. The National Long Term
Care Survey (NLTCS) is a longitudinal panel survey designed specifically
to assess the state and progression of chronic disability among the United
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States population aged 65 years or more (Corder and Manton, 1991). It con-
sists of six waves, conducted in 1982, 1984, 1989, 1994, 1999 and 2004. In
very rough terms, each wave consists of interviews to approximately 20,000
people, from which around 15,000 are previously interviewed individuals.
Each wave includes a fresh new sample of around 5,000 individuals. These
refreshment samples serve the double purpose of replacing those who have
died since the previous wave, and of keeping each wave representative of the
current state of the population over 65 (Clark, 1998). A total of around
49,000 people have been screened in the survey between 1982 and 2004.

The NLTCS assesses functional disability by evaluating subjects’ ability
to perform two sets of activities. The first one, called Activities of Daily
Living (ADL), comprises basic self-care activities, such as bathing, eating
and dressing. The second, Instrumental Activities of Daily Living (IADL),
involves activities necessary for independent living within a community, like
preparing meals or maintaining finances. The NTLCS determines the func-
tional status in these activities through answers to a series of triggering
questions, which are then summarized as binary response items that indi-
cate the presence or absence of impairments.

The design of the NLTCS is such that the survey data can be use used as
several cross-sectional samples, considering each wave as a different sample
from the target population at that time, and also as a longitudinal sample,
following individuals across different measurement waves.

The NLTCS first screens each sampled individual using a special, “screener”,
questionnaire aimed at quickly detecting if he or she is chronically disabled.
The operational definition of “chronically disabled” in the context of the
NLTCS requires that the individual presents an impairment in some ADL
or IADL lasting or expected to last at least 90 days. If screened-out, the in-
dividual’s status is registered and they are re-screened in subsequent waves,
to assess if the disability status has changed. If the individual is screened-in,
he or she is then interviewed using a detailed questionnaire. There are differ-
ent detailed questionnaires for institutionalized and individuals living in the
community. After receiving a detailed questionnaire for the first time, the
subject is then eligible to receive detailed questionnaires in all subsequent
waves of the survey until death (Clark, 1998).

In what follows, we have used a subset of the NLTCS consisting of all
six binary answers to questions about the individual’s ability to perform
ADLs (EAT: Eating; DRS: Dressing; TLT:Toileting; BED:Getting in and
out of bed; MOB:Inside mobility; BTH:Bathing), from all six waves of the
NLTCS. We obtained ages and dates of birth from linked Medicare data
from the Centers for Medicare and Medicaid services (CMS). We provide
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further details about our data pre-processing in Section 5.

3. Mixed Membership Trajectory Models. The goal of this anal-
ysis is to characterize typical progressions in acquisition of disabilities over
time, while taking into consideration and characterizing the heterogeneity
of the population. For this we combine two main ideas.

The first idea is clustering based on trajectories. This is the idea behind
Latent Trajectory models (LTMs. Nagin, 1999). Broadly speaking, LTMs
are mixture models of the form

(3.1) p(y|x) =
K∑
k=1

πkfk(y|x),

where y is a vector containing T longitudinal measurements of a response
variable of interest, and x is a vector that contains the corresponding T val-
ues of a time-dependent covariate. The joint densities corresponding to each
mixture component, fk(·), are in turn modeled using parametric trajectory
functions. Trajectory functions (or simply trajectories) describe typical pro-
gressions over time, usually modeling the dependence of the outcome vari-
ables as a function of age. For a given population, LTMs provide estimates of
both the trajectories, and the individuals’ distribution over them. Therefore
LTMs perform data-driven clustering based on evolution over time (see Na-
gin, 1999, for details). Connor (2006) adapted this technique for the analysis
of multivariate discrete data, and applied it to the NLTCS. The trajectory
curves represented the probability of presenting a disability as a function of
age. This tool provides a simple and easy mechanism to interpret typical
ways of aging, with a degree of heterogeneity handling. However, it assumes
that individuals within a class are perfectly homogeneous. It thus attributes
all the potential within-class variability to random fluctuations. In Connors
formulation, this assumption essentially says that, within a class, every sin-
gle individual responds to the exact same underlying aging process. It thus
disregards the fact that classes are ideal constructions to which possibly no
actual individuals belong (Kreuter and Muthén, 2008).

The second idea, Mixed Membership, provides a powerful and concep-
tually attractive way of relaxing the within-class homogeneity assumption.
Similarly to traditional clustering techniques, like the Latent Class model
(Goodman, 1974) or LTMs, Mixed Membership models still assume the ex-
istence of a small number of classes, called ideal types or extreme profiles.
However, instead of forcing every individual into one and only one class, they
allow them to belong simultaneously to more than one, in different degree.
The Grade of Membership model (GoM; Woodbury, Clive and Garson Jr,
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1978; Manton, Stallard and Woodbury, 1991) is an example of a mixed
membership model that has been successfully applied to the cross-sectional
analysis of the NTLCS (see e.g. Manton, Corder and Stallard, 1997; Man-
ton, Gu and Lamb, 2006; Manton, Lamb and Gu, 2007; Erosheva, Fienberg
and Joutard, 2007). Erosheva, Fienberg and Joutard (2007) developed a full
Bayesian version of the GoM model and applied it to a pooled across-waves
version of the NLTCS.

The approach we present here combines LTMs with Mixed Membership.
It seeks to produce a soft-clustering based on trajectories. Similar to LTM, it
assumes that for a given population we can identify a few ways of progressing
over time, which we consider ideal extreme cases. At the same time it as-
sumes that individuals in the population do not exactly correspond to these
typical profiles, but instead behave somewhere in between them, in quantifi-
able ways. Note that this approach is conceptually different from previous
cross sectional applications of the GoM model to the study of disability.
In those applications extreme profiles represented ideal types of disability,
whereas in TGoMs they represent ideal types of people. In the same way,
it also differs from other previously proposed time-dependent Mixed Mem-
bership models, which specify time-evolving individual membership (e.g.
Stallard, 2005; Xing, Fu and Song, 2010). In TGoMs the membership is an
immutable characteristic of the individual.

3.1. Basic TGoM Model. We consider a sample composed of N indi-
viduals. Following mixed membership ideas, we assume the existence of a
number, K, of reference types of individuals called extreme profiles. These
extreme profiles represent idealized individuals. This means that it might be
the case that no real individual corresponds exactly to any of them. Instead,
we assume that each individual i = 1, ..., N has an associated membership
vector, gi = (gi1, ..., giK), whose kth component, gik, represents their de-
gree of membership into the kth extreme profile. We constrain membership
vectors so that their components are positive numbers that sum to 1, i.e.
they lie on a K − 1 dimensional unit simplex, ∆K−1. In this way, we iden-
tify ideal individuals of the kth type as those whose membership vectors’
components are zeros on each component distinct from k, and gik = 1. For
instance, we say that an individual with membership vector gi = (0, 0, 1, 0)
belongs exclusively to the extreme profile k = 3. Similarly, we can represent
more complex membership structures. For example gi = (0.1, 0.2, 0.4, 0.3)
indicates that individual i has 10% membership in the first extreme profile,
20% in the second, and so on.

We are interested in modeling the progression of disability as time passes.
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We start by modeling ideal individuals. Let individual i provisionally be
a full member of extreme profile k, i.e. gik = 1. Let yij(τ) be 1 if the
individual does experiment difficulties performing ADL j at age τ , and 0
otherwise. We model the evolution of the probability of a positive response
to question j, yij(τ), as a function of age, λjk(τ), so that

(3.2) λjk(τ) = Pr
(
yij(τ) = 1|gik = 1,βjk, τ

)
.

Here βjk is a generic vector of parameters that indexes λjk(·) within a
parametric family—e.g. the parameters of a linear logistic curve. We call
the functions λjk(·) extreme trajectories.

Now moving to actual individuals, we specify the corresponding trajec-
tory of a generic, non-ideal individual i, with membership vector gi =
(gi1, ..., giK), as the convex combination

λ
(i)
j (τ) = Pr

(
yij(τ) = 1|gi,βj , τ

)
=

K∑
k=1

gikλjk(τ),

where βj = (βj1, ...,βjK).
Although τ is a continuously-varying quantity, we only have measure-

ments at each of the t = 1, ..., T = 6 occasions, corresponding to the waves
of the survey. Thus we define yijt = yij(Ageit), where Ageit is the age of
individual i at measurement time t = 1, ..., T . We group these numbers into
individual vectors Agei = (Agei1, ..., AgeiT ). Then we have that

p(yijt|gi,βj ,Agei) = Bern
(
yijt

∣∣∣λ(i)
j (Ageit)

)
=

K∑
k=1

gikBern (yijt | λjk(Ageit)) ,

where Bern(y|p) = py(1− p)1−y, for y ∈ {0, 1} and 0 < p < 1.
Next, we assume that, for a single individual, the J responses at each

of the T measurement times are conditionally independent of one another,
given their membership vector, gi, and covariate vector Agei. Under this
assumption we effectively use the membership vector and the covariates to
decouple the dependence structure present in the components of the re-
sponse. Then we have

p(Yi|gi,β,Agei) =
J∏
j=1

T∏
t=1

K∑
k=1

gikBern(yijt|λjk(Ageit)),(3.3)
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Figure 1: Graphical probabilistic representation of the basic TGoM model.
Observed variable Ageit is the age of individual i at survey wave t. Gray
nodes represent observed quantities; white nodes represent parameters to
estimate.

where Yi = (yijt)=1...J,t=1...T and β = (β1, ...,βJ). By assuming that each
individual has been randomly sampled from the population we finally get
the joint model of Y = (Yi), conditional on g = (gi) and Age = (Agei),

p (Y |g,β,Age) =
N∏
i=1

J∏
j=1

T∏
t=1

K∑
k=1

gikBern(yijt|λjk(Ageit)).(3.4)

We assume that membership vectors are i.i.d. samples from a common
distribution Gα, with support on the simplex ∆K−1. This yields the uncon-
ditional (on g) model for the sample Y,

p (Y|β,Age) =
N∏
i=1

∫
∆K−1

J∏
j=1

T∏
t=1

K∑
k=1

ωkBern(yijt|λjk(Agei))Gα(dω),(3.5)

where ω = (ω1, ..., ωK) ∈ ∆K−1. Figure 1 shows a graphical representation
of the structure of this model.

As Erosheva, Fienberg and Joutard (2007) discuss for the Grade of Mem-
bership model, the model in (3.3) admits the augmented data representation,

fAUG (Yi,Zi |Agei,β,gi ) =
J∏
j=1

T∏
t=1

K∏
k=1

[
gikBern(yijt|λjk(Ageit))

]I(zijt=k)
(3.6)

where Zi = (zijt)j=1...J,t=1...T with zijt ∈ {1, 2, ...,K}. Following Erosheva,
Fienberg and Joutard (2007), it is easy to show that the expression in (3.3)

imsart-aoas ver. 2014/07/23 file: long_gom.tex date: July 29, 2014
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is equivalent to

(3.7) p (Yi |Agei,β,gi ) =
∑
z∈Z

fAUG (Yi, z |Agei,β,gi )

where Z = {(zjt)J×T : zjt ∈ {1, ...,K}}. We then see that the model in
(3.3) can be thought as a marginalized version of the model in (3.6). This
equivalence shows that the TGoM model conforms to the general mixed-
membership structure described in Erosheva, Fienberg and Lafferty (2004).
It also makes it possible to construct algorithms for posterior inference of
the TGoM using the augmented model (Tanner, 1996).

3.2. Detailed Specification. The extreme trajectories functions, λjk(·),
encode several assumptions about the dynamics of the underlying process
over time. Thus their specific functional form must be application-specific.
For this application to the NLTCS, following Connor (2006), we use a linear
logit specification

logit [λjk(τ)] =β0jk + β1jkτ.(3.8)

Here βjk = (β0jk, β1jk). This specification expresses the intuitively sound
notion that the underlying probability of disability is a monotonic function
of age. It also has the advantage of being relatively simple, with just 2× J
parameters per extreme profile. In Supplement A we present an analysis
using an alternative specification, and include a discussion about the appro-
priateness of 3.8.

Similar to Erosheva (2002) and Airoldi et al. (2008), we take the common
distribution of the N membership vectors gi, Gα, as

gi|α
iid∼ Dirichlet(α),(3.9)

where α = (α1, α2, ..., αK) with αk > 0 for all k = 1, ...,K.
The Dirichlet distribution has some good properties in this setting. First,

it is conjugate to the multinomial distribution. This simplifies computations
using Gibbs samplers. Second, adopting the re-parametrization α = (α0 ·
ξ1, ..., α0 · ξK) with α0 > 0, ξk > 0 and

∑
k ξk = 1, we can interpret the

vector ξ = (ξ1, ..., ξK) as the average proportion of responses generated by
the kth extreme profile, and α0 as a parameter governing the spread of the
distribution: as α0 approaches 0, the samples from Gα are more and more
concentrated on the vertices of the simplex ∆K−1; and as α0 increases they
are more concentrated near its mean, ξ.

As Erosheva, Fienberg and Joutard (2007) and Airoldi et al. (2007) dis-
cuss, a priori setting parameter α in the Dirichlet distribution is too strong
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an assumption to do realistic modeling. Estimates can be highly sensitive to
this prior specification. For this reason, we prefer to estimate these parame-
ters directly from the data, specifying hyper-priors and computing posterior
distributions. We specify hyper priors for α0 and ξ similar to Erosheva
(2002) and Erosheva, Fienberg and Joutard (2007): α0 ∼ Gamma(aα, bα)
and ξ ∼ Dirichlet(1K). This specification takes advantage of the interpre-
tation of the parameters α0 and ξ, considering them as independent entities
and modeling them separately. For the same reason we also assume that
p(α0, ξ) = p(α0)p(ξ).

We specify the priors for the parameters that define the extreme trajecto-

ries, βjk = (β0jk, βjk), as two independent normal distributions, β0jk
iid∼ N(µ0, σ

2
0)

and β1jk
iid∼ N(µ1, σ

2
1), for all j = 1, ..., J and k = 1, ...,K. These priors can

be set to be non-informative, by a priori specifying high variances. We also
assume that βjk are a priori independent of α.

3.3. Representing Generational Changes. The basic TGoM model from
Section 3.1 takes advantage of the longitudinal nature of the NLTCS by
following individuals as they age. It, however, attributes all variation over
time, including changes in prevalence of disability patterns, to the individual
progression of aging. Thus, it attributes all changes in prevalence of disabil-
ity between different epochs to the aggregation of individuals that are at
distinct points of their life-trajectories.

To answer questions about changes in the ways of aging across different
generations—e.g. “are younger generations acquiring disabilities differently
than older ones?”—we need to take into account the birth cohort of indi-
viduals. We do so by modeling the dependence between cohorts and the
membership scores, keeping the extreme trajectories the same for the whole
population. This arrangement allows us to read differences in the ways of ag-
ing as differences in the underlying distribution of membership, conditional
on birth cohort. We interpret these differences using the common frame of
reference provided by the extreme trajectories.

A direct way of enabling inter-generational comparisons under this frame-
work is to keep the individual-level structure proposed for the basic TGoM
model, but replace the common distribution of membership vectors with a
family indexed by a function of the date of birth (DOB) covariate:

p (yijt |gi, Ageit,β ) =
K∑
k=1

gikBern (yijt|λjk(Ageit))

gi|DOBi
indep∼ Gα(DOBi).
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Figure 2: Probabilistic graphical representation of the extended TGoM
model with cohort effects. Gray nodes represent observed quantities; white
nodes represent parameters to estimate.

For our application we keep the Dirichlet specification, but replace its pa-
rameter α with a function of DOB, so that Gα(DOB) = Dirichlet(α(DOB)).
We note that under this specification the membership vectors, gi, are now
dependent on a covariate.

A simple, yet reasonably flexible way of specifying α(DOB) is by defining
a number of cohorts, and making it constant within each of them. Let Γ =
{γ1, γ2, ..., γC} be a finite partition (contiguous non-overlapping intervals) of
the range of possible dates of birth. Defineα(DOB) =

(
α1(DOB), α2(DOB), ..., αK(DOB)

)
by

(3.10) αk(DOB) =
∏
γ∈Γ

(
αγk
)I(DOB∈γ)

,

where αγk > 0. Then, we extend the TGoM model to handle cohort informa-
tion by replacing the population level distribution of membership vectors,
p(gi|α), with its conditional version, p

(
gi |α(DOBi)

)
. Figure 2 shows a

graphical representation of this expanded model.
We specify the same hyper-prior distribution that we used for the ba-

sic TGoM for all the newly introduced parameters. To this end, define

αγ0 =
∑K
k=1 α

γ
k and ξγk = αγk/α

γ
0 , and take αγ0

iid∼ Gamma(τ, η) and ξγ =

(ξγ1 , ..., ξ
γ
K)

iid∼ Dirichlet(1K).
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Wave
Cohort DOB 1982 1984 1989 1994 1999 2004∗

(t = 1) (t = 2) (t = 3) (t = 4) (t = 5) (t = 6)

1 –1906 6329 6025 1347 1397 617 70
2 1906–1914 7631 7082 3452 3335 1753 575
3 1914–1919 3696 7839 2627 5102 3679 2010
4 1919–1926 1 463 2410 4581 4724 3505
5 1926– 0 0 0 2478 6403 4251

(*) Only individuals present in 1999
Table 1

Cohort definition and distribution by wave

4. Estimation. We developed MCMC algorithms based on Gibbs sam-
pling to obtain samples from the posterior distribution of parameters for
both the basic and the generational model. These algorithms rely on the
augmented data representation in (3.6). We present the full description in
appendices A and B.

5. Application to the NLTCS. We have selected an extract from
the NLTCS data that includes data from all six waves. These data include
all the individuals that received the screener in at least one of the first
five waves of the survey (1982, 1984, 1989, 1994 or 1999). We excluded
individuals who entered the sample for the first time in 2004 because of lack
of information about their dates of birth and death. Similarly, we excluded
all the individuals that were institutionalized in 1982 because the NLTCS
did not register their ADL statuses that year. The resulting sample size
was N = 38, 428 subjects. For each individual at each wave we focused on
six ADLs: Eating (j = 1), Dressing (j = 2), Toileting (j = 3), Getting In
or Out of Bed (j = 4), Inside Mobility (j = 5) and Bathing (j = 6). We
determined the age of each individual in years by computing the difference
between the interview and birth dates, and assuming 365 days for all years.
For computing and prior specification purposes, we re-centered ages at 80
years. However, for clarity we report any estimates or descriptive statistics
related to age without the offset.

We defined five cohorts or generational groups, partitioning the ranges of
possible dates of birth according to the intervals defined in the second column
of Table 1. We selected these intervals so that they group approximately
the same number of individuals. A salient feature of this arrangement is
that individuals from the youngest cohort (cohort 5—born after 1926) have
measurements only in the last three waves due to age eligibility, as its oldest
members turned 65 after 1991. Also note that neither the oldest (cohort
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12 D. MANRIQUE-VALLIER

1—born before 1906) nor the youngest (cohort 5—born after 1926) cohorts
span the whole range of relevant dates of birth in the NLTCS. In fact, the
oldest individual in cohort 5 could be at most 78 years old in 2004, while
the youngest individual from cohort 1 could not be younger than 76 years
old in 1982.

5.1. Basic GoM trajectory model. We fitted the basic model described
in Section 3.2 to the NLTCS data using the MCMC algorithm from Ap-
pendix A, for K = 2, 3, 4 and 5 extreme profiles.

We set the prior distribution for the proportions parameter of the mem-
bership vector, ξ, as a uniform distribution over ∆K−1, or Dirichlet(1K). We
specified the prior distribution for the corresponding concentration param-
eter, α0, as Gamma(1, 5), in shape/inverse scale parametrization. This last
specification expresses a slight preference for small values of α0, although not
very pronounced. This choice is more a modeling decision than an expression
of prior knowledge: small values of α0 in the Dirichlet parametrization have
the effect of concentrating the probability of individual membership vectors
around the vertices of the unit simplex. This has the effect of producing
individual membership vectors where one single profile is predominant, but
where the other profiles still exert some effect. This behavior is a desirable
characteristic from an interpretative standpoint that allows us to discuss
“predominant” profiles, while still having a significant degree of flexibility
in the handling of heterogeneity due to the influence of the other profiles.
For the parameters governing the extreme trajectories, we selected diffuse
independent normal priors with µ = 0 and variance σ2 = 100.

In all cases, the MCMC chains converged rapidly, reaching stationary dis-
tributions after approximately 15,000 iterations. Still, run times were long
due to the chains’ slow mixing. In all cases, we ran 120,000 iterations, dis-
carded the first 20,000 and subsampled them, keeping 20% of the remaining.
Similar to other latent variable models, the TGoM is invariant to permuta-
tion of its extreme profile labels. Thus, we inspected the trace plots for signs
of label-switching (Jasra, Holmes and Stephens, 2005). No switching was
found. Although label-switching is a potential problem, in this application
the modal regions of the posterior distributions seem to be well separated
due to the abundance of data.

5.1.1. Basic Model Results. The basic TGoM model includes parameters
that represent two distinct structural features: typical ways of aging, given
by the extreme profiles (parameters β), and the way individuals distribute
with respect to these extreme profiles (parameters ξ and α0). Extreme
profile parameters can be difficult to interpret directly. Thus we instead
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(c) K = 4

Figure 3: Posterior estimates of extreme profiles for models with K =
2, 3, 4. Vertical segments represent the age range at which ideal indi-
viduals’ probabilities of disability go up from 0.1 to 0.9, for each ADL
([Age0.1,jk, Age0.9,jk]]). For visualization purposes ADLs are sorted accord-
ing to Age0.5,jk posterior estimates.

consider the quantities given by the transformation

Ageq,jk = − 1

β1jk

[
β0jk + log

(
1− q
q

)]
+ 80,(5.1)

for q = 0.1, q = 0.5 and q = 0.9. These parameters express the age at which
an ideal individual of the extreme profile k reaches a probability q of being
unable of performing ADL j. The 80 year offset is required because we have
re-centered the age data, subtracting 80. We also re-label extreme profiles
according to the decreasing sequence of posterior estimates of ξk. This is
necessary because the TGoM’s invariance to permutations of the extreme
profile labels. This way, the expression “first extreme profile” (k = 1) will
always refer to the extreme profile with the highest relative importance
in the population (the one to which most individuals are the closest; see
Section 5.1), and “the last” (k = K) to the one with the lowest.

Figure 3 and Table 2 present summaries of the posterior distribution of
the extreme profile and mixed membership parameters, respectively. Plots
in Figure 3 are based on posterior means of the quantities Ageq,jk, for models
with K = 2, 3, 4. For each extreme profile, vertical line segments represent
the age interval at which the probability of being unable to perform each
ADL increases from 10% to 90%, i.e. [Age0.1,jk, Age0.9,jk]. To aid visualiza-
tion, we sorted the ADLs according to the Age0.5,jk estimates. Note that
this procedure resulted in the exact same sequence of ADL in every case. Ta-
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14 D. MANRIQUE-VALLIER

α0 ξ1 ξ2 ξ3 ξ4 ξ5
K = 2 0.328 0.824 0.176 — — —

(0.007) (0.002) (0.002)
K = 3 0.261 0.645 0.251 0.104 — —

(0.006) (0.004) (0.004) (0.002)
K = 4 0.237 0.540 0.259 0.124 0.078 —

(0.006) (0.005) (0.004) (0.003) (0.002)
K = 5 0.235 0.496 0.244 0.128 0.074 0.058

(0.005) (0.007) (0.006) (0.003) (0.002) (0.001)
Table 2

Posterior estimates of population-level parameters for basic model with K = 2, 3, 4, 5
extreme profiles. Numbers between parenthesis are posterior standard deviations.

ble 2 shows the posterior summaries of the mixed membership distribution
parameters, α0 and ξ.

Estimates of the parameter α0, in Table 2, are relatively small for all
models. This was expected since the prior distribution of α0, Gamma(1, 5),
was already expressing strong a priori preference for small values of α0.
However, as we can note from their very small posterior dispersion relative
to the prior dispersion, these estimates are strongly data-driven. This is not
surprising, considering the large amount of data available to perform the
estimations.

For all models, the extreme profile with the highest relative importance
in the population, k = 1, represents a pattern of healthy aging, with a
very late onset of disability. Extreme trajectories in this profile show that
for any ADL, ideal individuals in this class have a very small probability of
experimenting disability until approximately age 90. The remaining extreme
profiles show patterns with progressively earlier onsets of disability, as we
consider the extreme profiles in sequence. This is a feature worth noting:
all models point an inverse relationship between the relative importance of
a profile in the population and its implied age of onset of disability. This is,
most people’s aging trajectories are closer to a profile that describes a late
onset of disability.

We note that the sequence of ADLs obtained from sorting them accord-
ing to their implied age of onset of disability (represented by parameter
Age0.5,jk) is the same for all extreme profiles of all models. Closer inspec-
tion reveals that the pattern of acquisition of disabilities directly inferred
from the data closely follows what we can interpret as a sequence of ac-
tivities decreasingly sorted in terms of difficulty: inside mobility, toileting,
dressing, bathing, getting in and out of bed, and eating.

Another salient feature of these results is that for k = 1, 2, 3 and 4, the
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Figure 4: Individual-level mixture of trajectories for model with K = 3
extreme profiles for each ADL. Extreme trajectories are represented with
thick lines and and a random sample of 100 individual posterior trajectory
curves are plotted using thin lines

inferred slope parameters of the extreme trajectories (β1jk) are all positive,
even though the prior specification allows for negative values. This result
supports the intuition that the probability of experiencing a disability in any
ADL can only increase as one ages. It also makes it possible to construct
the graphical summaries in Figure 3. The only exception to this regularity
is in profile k = 5, in the model with K = 5 extreme profiles. In this profile
trajectories exhibit a counter-intuitive decreasing progression. We note that
the relative importance of this profile in the population is small, with ξ̂5 ≈
0.058 (compared with ξ̂1 ≈ 0.496 for the most important profile). From
a modeling perspective, an obvious way of avoiding this type of aberrant
behavior is to make it an impossibility a priori, restricting the support
of the slope parameters to positive values. We have implemented such a
model. However, while the rest of the parameters remained almost the same,
the slope parameter of most trajectories in this profile were zero or very
close to zero. These outcomes—together with the results obtrained using a
different trajectory specification, in Supplement A—suggest that this profile
captures a small residual variability, which is not correctly modeled by the
main extreme trajectories. Accounting for this effect is an area for future
improvements.

To better understand the way TGoM models handle individual-level het-
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Figure 5: Individual-level mixture of trajectories for model with K = 4
extreme profiles for each ADL. Extreme trajectories are represented with
thick lines and and a random sample of 100 individual posterior trajectory
curves are plotted using thin lines

erogeneity, it is instructive to visualize, in addition to the extreme trajecto-
ries, the actual individual trajectories that result from the individual-level

mixing, λ
(i)
jk (τ). Plots in Figures 4 and 5 show a random sample of 100 such

curves, overlaid over the three extreme trajectory curves, for each ADL, un-
der the model with K = 3 and K = 4 extreme profiles, respectively. We
see that most of the individual curves cluster in the vicinity of the extreme
curves. This is expected, given the small value of the concentration param-
eter, α0. However, we also see that a significant portion of the individual
curves lies somewhere in between extremes, exhibiting trajectories that are
the product of the interaction of more than one extreme. In particular, we
observe a fair number of individual trajectories that fall in between extremes
k = 1 and k = 2. These trajectories form a somewhat homogeneous cluster
different from the extreme profiles. Nonetheless, the TGoM model has been
able to accommodate them as a combination of (mainly) profiles k = 1 and
k = 2, without needing to create a whole new category for them. This be-
havior is what gives TGoM models the flexibility to accommodate complex
individual heterogeneity, while at the same time producing meaningful and
interpretable summaries. Different from traditional LTMs (Nagin, 1999;
Connor, 2006), which require that individuals follow one and only one of
the typical trajectories, this approach allows them to depart from the main
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tendencies, but not too much, thus retaining interpretability.

5.1.2. Multivariate Model Diagnostics. TGoM models explicitly model
individual-level dependency between disability outcomes, both longitudi-
nally and between ADLs, with the help of an individual-level mixed mem-
bership structure. In order to investigate empirically how TGoMs handle
this dependency, we evaluate posterior univariate and multivariate out-of-
sample predictive quantities. We define

φKijt = Pr(y∗ijt = yijt|D,K)(5.2)

φKij = Pr(y∗ijt = yijt, for all t|D,K)(5.3)

φKit = Pr(y∗ijt = yijt, for all j|D,K)(5.4)

φKi = Pr(y∗ijt = yijt, for all t and all j|D,K),(5.5)

where y∗ijt is the posterior predictive outcome of individual i in ADL-j at
wave t, D are the NLTCS data, and K refers to the number of extreme pro-
files. Thus, for individual i, φKijt is the (univariate) posterior probability of

correctly predicting outcome yijt using a TGoM with K extreme profiles; φKij
is the probability of simultaneously correctly predicting the whole sequence
of responses to ADL-j, at all waves; φKjt is the corresponding probability
of correctly predicting all the ADLs at wave t; and φi is the probability of
simultaneously correctly predicting all the responses of an individual. In or-
der to estimate the out-of-sample predictive performance of our models we
compute all these quantities using a 4-fold cross-validation scheme (Hastie,
Tibshirani and Friedman, 2009; Airoldi et al., 2010).

As a comparison we also fit a model that assumes stochastic independence
between univariate outcomes, given age. We fit six (one for each ADL) non-
parametric logistic regressions of πijt = Pr(yijt = 1) on age, using General-
ized Additive Models (GAM; Hastie, Tibshirani and Friedman, 2009, Ch 9).
We use this model as a reference for assessing how our models handle the
multivariate structure present in the data. To this end, we compute quan-
tities analogous to (5.2)–(5.5): φGAMijt = Bern(yijt|π̂ijt), φGAMij =

∏
t φ

GAM
ijt ,

φGAMit =
∏
j φ

GAM
ijt , and φGAMi =

∏
j,t φ

GAM
ijt , where π̂ijt is the fitted value

of πijt. We compute these quantities using the same 4-fold cross-validation
scheme we use for the TGoM quantities.

Table 3 shows the 4-fold cross-validated means (over all their sub-indexes)
of φijt, φij , φit and φi, for TGoM with K = 1, 2, ..., 5 extreme profiles, and
for the logistic GAM models. We take these numbers as estimates of the
corresponding file-level rates of correct predictions for each model. We note
that both TGoM and GAM models have similar univariate prediction rates,
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Model φijt φij φit φi
TGoM K = 1 0.811 (100%) 0.644 (79.4%) 0.452 (55.7%) 0.251 (30.9%)
TGoM K = 2 0.803 (100%) 0.666 (82.9%) 0.567 (70.6%) 0.414 (51.6%)
TGoM K = 3 0.802 (100%) 0.668 (83.3%) 0.593 (73.9%) 0.440 (54.9%)
TGoM K = 4 0.801 (100%) 0.668 (83.4%) 0.605 (75.5%) 0.451 (56.3%)
TGoM K = 5 0.799 (100%) 0.664 (83.1%) 0.607 (76.0%) 0.454 (56.8%)
GAM-Logistic 0.812 (100%) 0.645 (79.4%) 0.451 (55.5%) 0.247 (30.4%)

Table 3
Out-of-sample rates of univariate and multivariate correct predictions for TGoM and

non-parametric logistic regression models. Percentages between parentheses are the ratio
of each entry with respect to its corresponding univariate correct prediction rates, φ̄ijt.

of around 80%, slightly favoring GAM. However, most of the joint predic-
tion rates of the TGoM models with K > 1 are substantially better than
the alternative. In particular, TGoM correct prediction rates for complete
individual outcomes vectors, φ̄i, are between 41.4% and 45.4%, while for
the GAM model it drops down to 24.7%. We also observe that multivariate
prediction rates using TGoM models tend to be much closer to their uni-
variate prediction rates than the corresponding quantities using the GAM
alternative. For instance, the ratio φi/φijt (numbers between parenthesis in
the 5th column of Table 3) ranges from 51.6% to 56.8% for TGoM models
(K = 2 and K = 5, respectively), while for GAM it falls down to 30.4%.
We finally observe that estimates with TGoM model with K = 1 are al-
most identical to those obtained with GAM. This is because fitting TGoMs
with only one extreme profile (K = 1) is equivalent to fitting J independent
logistic regressions of the response variable (ADLs) on the predictors (Age).

An interesting feature in Table 3 is that longitudinal predictions (φij)
are better than cross-sectional predictions (φit) for all models. This can be
explained noting that both TGoM and GAM approaches exploit the extra
longitudinal information provided by the vectors of individuals’ ages. By
contrast, when modeling the multivariate cross-sectional structure, TGoM
relies only on Mixed Membership and GAM only on independence given
age. Nonetheless, the comparison between the two modeling approaches
still favors TGoM models.

The conclusion of this prediction exercise is that TGoM models with
more than one extreme profile do capture a large portion of the multivariate
structure present in the data, both longitudinally and cross-sectionally.

5.2. Fitting the Cohort Extensions. We have fitted the model with ex-
tensions to handle cohort information to the NLTCS data using the MCMC
algorithms in Appendix B, for K = 2, 3 and 4 extreme profiles.
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(c) K = 4

Figure 6: Evolution of the parameter vector ξ across different generations
for model with K = 2, 3 and 4 extreme profiles. The error bars show 95%
equal tail posterior credible intervals associated with the kth component of
the vector ξ.

The main objective of the analysis with this model is to compare the un-
derlying distribution of the membership vectors conditional on generational
groups, as a way of assessing differences in the ways of aging between dif-
ferent cohorts. We do this by directly comparing the parameters of these
distributions for each generational group γ ∈ Γ, αγ , and interpreting them
with respect to the common extreme trajectories, defined by the parameters
(βjk).

Figure 6 shows the estimates (posterior means) of the components of the
vector ξ for models with K = 2, 3 and 4 extreme profiles, for each cohort.
For each generational group, γc, the sequence of values of ξγck , are linked with
lines. Reading from left to right, these sequences indicate the evolution of
the relative weight of the kth component in each cohort, as we shift our
attention from older to younger cohorts. Posterior estimates of the common
extreme profile parameters, (βjk), are very similar to those computed using
the basic TGoM model (see Supplement A for details), so we can safely refer
to them when discussing extreme profiles.

The most salient feature in Figure 6 is the increasing monotonicity of the
relative importance of the first component (k = 1) in each cohort, as we con-
sider younger and younger cohorts, i.e. ξγ11 < ξγ21 ... < ξγ51 . This is especially
clear in models with K = 2 and K = 3. In the model with K = 4, because
of the high posterior dispersion, it is not clear if the youngest generation
actually follows this pattern. A likely explanation for this uncertainty is the
lack of data for ages past 78 years old in cohort 5.

This trend tells us that, as we consider newer cohorts, their members
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tend to be increasingly close to profile k = 1. This profile corresponds to
the healthiest aging progression, with extremely low probability of acquiring
disabilities until very advanced ages, as can be observed in Figure 3. Thus,
we conclude that younger generations tend to have healthier ways of aging,
compared to their elders.

6. Discussion. The methods we propose and apply here have several
desirable features. First, they produce meaningful and easy to interpret
summaries of the main temporal trends in the population. In this appli-
cation, these summaries—the extreme trajectories—isolate typical ways of
progressing into disability, and allow a simplified analysis of the longitudinal
patterns. Second, they allow a simple, but not over-simplified, characteri-
zation of the individual heterogeneity in terms of the extreme trajectories.
This keeps the extreme profile characterizations simple, while still allowing
the representation of complex individual trajectories. Finally, the model’s
extensions allow comparisons between groups of individuals, defined by given
static characteristics. In this application it enables the separation of time
dependent effects that depend on age, from those dependent on birth cohort.

The results obtained through the application of our methods to the NLTCS
highlight some interesting characteristics of the data, and in general of the
aging process in the U.S. All the models considered here showed that most
individuals are close to the “healthy aging” profile (k = 1), whose associated
extreme trajectories (for the 6 ADLs) describe a practically disability-free
life until very late ages (90+). Then we find that profiles with trajectories
that specify earlier onsets of disability exhibit progressively less importance
in the population. This means that most people could be expected to have
a relatively disability-free old age, and that very bad aging processes are not
so common.

When considering the effect of the birth cohort—estimating simultane-
ously population-wide extreme profiles, together with individual member-
ship conditional on cohort—we find a similar situation. However, different
generations have a different membership composition: the relative impor-
tance of the “healthy aging” profile (k = 1) experiments a monotonic in-
crease when moving from older to younger generations, to the detriment
of all the other profiles. Thus, the answer to the question “do younger
generations acquire disabilities differently than older ones?” appears to be
affirmative. Furthermore, it is so in a positive sense: not only do younger
generations acquire disabilities differently; they acquire them later. These
findings are consistent with previous evidence showing a decline in disabil-
ity obtained from purely cross-sectional analyses (Manton, Corder and Stal-
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lard, 1997; Manton, Gu and Lamb, 2006), from wave to wave latent class
transition analysis (White and Erosheva, 2013), and from latent trajectory
analysis (Connor, 2006).

So far declines in disability have been analyzed mostly from wave to wave,
either from uncorrelated cross-sectional samples as changes in prevalence
(Manton, Corder and Stallard, 1997; Manton, Gu and Lamb, 2006; Manton,
Lamb and Gu, 2007); or from longitudinal analysis as transitions between
states (Stallard, 2005; White and Erosheva, 2013). Our approach, in con-
trast, is not rooted on survey waves, nor does it directly assess changes
in prevalence of disability. Instead, it characterizes whole individual life-
trajectories. It therefore enables direct comparisons across different ways of
aging.

An important issue that we have addressed informally here is choosing the
number of extreme profiles, K. In section 5.1.2 we noted that in general the
out-of-sample multivariate fit measures improved with model complexity,
increasing K, although the improvement was different depending on which
multivariate dimension we chose to analyze. We also have observed that the
least important profiles in models with K > 4 do not reveal informative tra-
jectories. Furthermore, we note that our conclusions do not really depend on
an exact number of extreme profiles. Therefore, we evaluate that in this case
we do not need to select a “best” model; instead, we have opted for report-
ing results from several models, with numbers of extreme profiles ranging
from K = 2 to K = 4. Model selection, however, can be an important issue
in other applications. Possible approaches include the use of indexes such
as AIC (Akaike, 1973) or BIC (Schwarz, 1978)—or their more computa-
tionally convenient counterparts DIC (Spiegelhalter et al., 2002), AICM or
BICM (Raftery et al., 2007)—although in this case the difficulty in comput-
ing the integrated likelihood could make this approach impractical. Another
approach is to use Bayesian non-parametric specification that favor sparse
representations, such as a Dirichlet Process mixtures. Bhattacharya and
Dunson (2012) have proposed what is essentially a non-parametric Mixed
Membership model for categorical data, which could be adapted for this
purpose.

As for model limitations, this analysis attributes all variability in the
data to a combination of random fluctuation, age effects, cohort effects,
and mixed membership. Thus it neglects other potential systematic effects,
some of which might be important either to capture previously unaccounted
variability, or simply for better understanding the underlying processes. For
instance, it is well known (see e.g. Ferrucci et al., 1996; Manton, 2008)
that men and women follow different aging and mortality processes. One
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natural way of accounting for non time-dependent categorical covariates,
like gender or race, is to introduce them in the same way we introduced
the DOB covariate: as conditioners on the prior distribution of individual
membership. If the cells on the contingency table generated by the cross-
classification according to the covariates are well populated, we can directly
use the TGoM extensions from Section 3.3. If this is not the case, the joint
covariate vector can be smoothed using more complex prior specifications,
such as those proposed in Bertolet (2008) for the Grade of Membership
model.

Another related limitation of these models is that they do not account
for mortality. In essence, these models correspond to what Kurland and
Heagerty (2005) and Kurland et al. (2009) call an “immortal cohort”. This
is of particular importance in the present application because patterns of
disability are usually tied to patterns of mortality (Ferrucci et al., 1996;
Connor, 2006; White and Erosheva, 2013): progression into more severe
disability goes together with an increased probability of death. One way
of integrating mortality into this framework is to extend the definition of
extreme profiles to characterize not only patterns of disability acquisition,
but also of survival. Such a joint model could be the topic of a future article.
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SUPPLEMENTARY MATERIAL

Supplement A: Suplement to Longitudinal Mixed Membership
Trajectory Models for Disability Survey Data
(; .pdf). Estimation using TGoM models with piece-wise constant trajecto-
ries, and tables with posterior estimates for all the fitted models.
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APPENDIX A: MCMC SAMPLER FOR THE TGOM MODEL

In this appendix we present a Gibbs sampling algorithm for Bayesian esti-
mation of the TGoM model, also described in Manrique-Vallier (forthcoming
2014). Following the discussion at the end of Section 3.1, we construct an al-
gorithm for obtaining samples from the posterior distribution of parameters
in the augmented data model in equation (3.6), which after marginalizing z
is equivalent to the TGoM model. This posterior distribution is

(A.1) p(α,β,Z,g|Y,Age) ∝ p(α,g,β)
N∏
i=1

fAUG (Yi,Zi |Agei,β,gi ) ,

which following the the detailed specification from Section 3.2 is equivalent
to

p(α,β,Z,g|Y,Age) ∝Gamma(α0|aα, bα)×Dirichlet
(
ξ|1K

)
×

N∏
i=1

Dirichlet(gi|α)×
J∏
j=1

K∏
k=1

N(β0jk|µ0, σ
2
0)×N(β1jk|µ1, σ

2
1)

×
N∏
i=1

J∏
j=1

T∏
t=1

gizijt
exp(yijtβ0jzijt + yijtβ1jzijtAgeit)

1 + exp(β0jzijt + β1jzijtAgeit)
,

(A.2)

with α0 =
∑
αk and ξ = (α1/α0, ..., αK/α0). Parameters aα and bα are

shape and inverse scale parameters, respectively.
A Gibbs sampling algorithm for obtaining samples from the joint posterior

distribution of (α,β,Z,g) can be constructed as follows.

1. Sampling from Z: For every i ∈ {1 . . . N}, j ∈ {1 . . . J} and t ∈
{1, ..., T}, sample zijt|... ∼ Discrete({1, ...,K}, (p1, p2, ..., pK)), with

pk ∝ gik
exp [yijt(β0jk + β1jkAgeit)]

1 + exp(β0jk + β1jkAgeit)

for all k ∈ {1, . . . ,K}.
2. Sampling from βjk: Let Ξ = {(i, t) : zijt = k} and assume that
µ0 = µ1 = 0. The full joint conditional distribution of (β0jk, β1jk) is

p (β0jk, β1jk|...) ∝
exp

[
−
(
β2
1jk

2σ2
1

+
β2
0jk

2σ2
0

)
+ β0jk

∑
Ξ yijt + β1jk

∑
ΞAgeityijt

]
∏

Ξ [1 + exp (β0jk + β0jkAgeit)]
.
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To sample from this distribution we use a random walk Metropolis
step:

(a) Sample proposal values β∗0jk ∼ N(β0jk, σ
2
β0) and β∗1jk ∼ N(β1jk, σ

2
β1),

where σ2
β0 and σ2

β1 are tuning parameters.

(b) With probability

rM = min

{
1,
∏
Ξ

 1 + exp [β0jk + β0jkAgeit]

1 + exp
[
β∗0jk + β∗0jkAgeit

]


× exp

[
−
β∗20jk − β2

0jk

2σ2
0

+
(
β∗0jk − β0jk

)∑
Ξ
yijt

]

× exp

[
−
β∗21jk − β2

1jk

2σ2
1

+
(
β∗1jk − β1jk

)∑
Ξ
yijtAgeit

]}
(A.3)

make (β0jk, β1jk) = (β∗0jk, β
∗
1jk). Otherwise keep the current

value.

3. Sampling from gi:

gi|...
indep.∼ Dirichlet

(
α1 +

∑
j,t

I(zijt = 1), . . . , αK +
∑
j,t

I(zijt = K)

)
.

4. Sampling from α: The full conditional distribution of α,

p(α|...) ∝αaα−1
0 e−α0bα ×

[
Γ (α0)∏K
k=1 Γ(αk)

]N K∏
k=1

[
N∏
i=1

gik

]αk
,

does not have any recognizable form. We use a Metropolis-Hastings
step similar to Manrique-Vallier and Fienberg (2008):

(a) Obtain the proposalα∗ = (α∗1, α
∗
2, ..., α

∗
K), with α∗k

indep∼ lognormal(logαk, σ
2).

(b) Let α∗0 =
∑K
k=1 α

∗
k. With probability

r = min

{
1,e−aα(α∗

0−α0)
(
α∗0
α0

)bα−1
(

K∏
k=1

α∗k
αk

)

×
[

Γ(α∗0)

Γ(α0)

K∏
k=1

Γ(αk)

Γ(α∗k)

]N K∏
k=1

(
N∏
i=1

gik

)α∗
k−αk}

,

make α = α∗. Otherwise keep the current value. Obtain (α0, ξ)
by making α0 =

∑K
k=1 αk and ξk = αk/α0, for all k = 1, ...,K.
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APPENDIX B: FITTING THE GENERATIONAL EXTENSION

The only difference between the posterior distributions of the basic and
the extended TGoM models is the distribution of gi|α. Thus, we only have
to adapt steps 3 and 4 in the previous algorithm, by replacing

∏N
i=1 p(gi|α)

with

N∏
i=1

p
(
gi|α(DOBi)

)
=
∏
γ∈ Γ

N∏
i=1

[
p
(
gi|αγ

)]I(DOBi∈γ)
.(B.1)

Let γi ∈ Γ be the unique interval from the partition such that DOBi ∈ γi.
We obtain an MCMC sampler for this model, by modifying steps 3 and 4
from the algorithm in Appendix A with

3’ Sampling from gi.

gi|...
indep∼ Dirichlet

αγi1 +
∑
j,t

I(zijt = 1), ..., αγiK +
∑
j,t

I(zijt = K)

 .
4’ Sampling from α: Let Ξγ = {i : γi = γ}. The full conditional

distribution of αγ is

p(αγ |...) ∝ (αγ0)aα−1e−α
γ
0 bα ×

[
Γ (αγ0)∏K
k=1 Γ(αγk)

]#(Ξγ) K∏
k=1

[∏
Ξγ

gik

]αγ
k

,

where #(Ξγ) is the number of elements in the set Ξγ .
This expression is similar (B.1) in Appendix A. We thus adapt the
procedure by replacing r in step 4 of the algorithm with

r = min

{
1, exp

[
−τ(α∗0 − α

γ
0)
] ( K∏

k=1

α∗k
αγk

)(
α∗0
αγ0

)τ−1

×
[

Γ(α∗0)

Γ(αγ0)

K∏
k=1

Γ(αγk)

Γ(α∗k)

]#(Ξγ) K∏
k=1

∏
i∈Ξγ

gik

α∗
k−α

γ
k}
.

Daniel Manrique-Vallier
Department of Statistics
Indiana University
Bloomington, IN 47408
USA
E-mail: dmanriqu@indiana.edu

imsart-aoas ver. 2014/07/23 file: long_gom.tex date: July 29, 2014

mailto:dmanriqu@indiana.edu

	Introduction
	The National Long Term Care Survey
	Mixed Membership Trajectory Models
	Basic TGoM Model
	Detailed Specification
	Representing Generational Changes

	Estimation
	Application to the NLTCS
	Basic GoM trajectory model
	Basic Model Results
	Multivariate Model Diagnostics

	Fitting the Cohort Extensions

	Discussion
	Acknowledgments
	Supplementary Material
	References
	MCMC sampler for the TGoM model
	Fitting the generational extension
	Author's addresses

