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Abstract
Since the now famous article by Link (2003), identifiability issues in Capture-Recapture (CR)

have appeared sporadically in the literature, but neither a unified treatment nor general solution
exist. Aleshin-Guendel, Sadinle, and Wakefield attempt to fill this gap by proposing a change of
perspective in both the formulation and practice of CR. I contend that their proposal, while bold
and thought-provoking, is not a step in the right direction: it fundamentally misunderstands
the nature of real-life CR modeling; and attempts to solve problems by prescribing unnecessary
and impractically broad restrictions to practice.

1 Introduction

I thank the authors for this thought-provoking piece and for the opportunity of engaging in this
fascinating discussion. Since the famous paper by Link (2003), identifiability issues in Capture-
Recapture (CR) have been sporadically studied but, to my knowledge, neither a unified treatment
nor solution exist. The present work attempts to fill this void by proposing a change of perspective
in both the formulation and practice of CR. The authors focus their attention on the constraints
needed to ensure the statistical identifiability of the unknown population size (“Identifying Assump-
tions,” IA). They contend that current practice does not pay due attention to IAs and, importantly,
to the need of justifying them. This lack of attention, they judge, is due to the almost univer-
sal practice of specifying models for complete data (this is, together for observed and unobserved
individuals), which implies both an observable-data model and IA, but does not make the latter
explicit. Their proposal is prescriptive: they advocate for replacing the current practice of specify-
ing complete-data sampling models, and replacing it with the direct specification and justification
of IAs—and, separately and if needed, observable-data models. This perspective, they anticipate,
will have the desirable effect of confronting practitioners with the need of selecting and justifying
appropriate IAs. Justification for IAs, besides ensuring identifiability, should stem from their rea-
sonable correspondence with the applied data context. Moreover, the authors judge that inability
of justifying IAs in an applied situation should preclude the use of CR.

The proposal is intriguing and bold. I agree with the authors that identifiability in CR is
an important and understudied topic, and that concepts from the (non-ignorable) missing data
literature can be useful tools in the area (Manrique-Vallier et al., 2022). The strategy certainly
“puts the [IA] front and center” of CR practice, as the authors claim. Furthermore, in some sense it
also solves identifiability problems, as there cannot be identifiability problems where the restrictions
needed to avoid them have been purposefully and correctly chosen to that effect.
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Unfortunately, the proposal appears to me as more of a wild-goose chase than the workable
and fertile framework envisioned by the authors. The framework is formally correct inasmuch as
it is mathematically neutral: it is based on the equivalence between complete-data models and the
classical conditional decomposition of the CR likelihood (Sanathanan, 1972). Thus, as the authors
appropriately attempt to do, its value should be justified from its utility and feasibility, balanced
against its potential disadvantages. I contend that not only the authors’ evaluation of that balance
is flawed, but also that the proposal itself is neither workable nor useful. Moreover, I find the
proposal itself to be unnecessarily restrictive, and to be predicated upon unreasonable premises:
an implausible idealization of CR modeling; the unwarranted reification of an otherwise useful
analytical object; and an out-of-proportion concern regarding the dangers of non-identifiability.

2 Complete data processes and IAs

My first objection to the proposal is to its implied assumptions about CR modeling. These manifest
prominently in the requirement of justifying IAs based on the real-life data context. The authors
are adamant about this requirement, and in this they adopt the posture of considering both its
desirability and feasibility as self-evident. To understand why I believe this is an unreasonable
position, it might be useful to contrast it to what I would call a “traditional” understanding of CR.

The main insight behind multiple-list CR is that whenever we have two or more lists whose
elements have been sampled from the same population (save unfortunate, but unlikely, sampling
coincidences), some individuals will be present in some lists but not in others. Thus, we can learn
about the sampling and non-sampling of individuals by studying how some of those individuals
appear in some lists, while not appearing in others. For example an individual with capture vector
(0, 1, 0) provides information about not-appearing in lists 1 and 3, and information about appearing
in list 2. This leads to the CR method: in essence, fit a joint model for the capture vector and
use it to extrapolate the probability of not being captured by any list. Seen this way, the main
limitation of CR results evident. Since all of the records in a multi-list dataset need, by definition,
to be present in at least one of the lists, there cannot be any real data directly informing about not
being in all lists simultaneously—which, lest we forget, is our inferential target. This means that
any inference about non-observed individuals ultimately relies on whatever assumptions the joint
model may impose on the relationship between individuals observed at least once and those fully
unobserved. This relationship is the IA.

In this view, complete-data distributions stand as representations of joint sampling processes
and, as such, should be justified in application-relevant ways. For example, independence (or
main-effects log-linear) models can be appropriate if data were collected from a number of truly
independent random samples. If instead we suspected that each individual had an intrinsic “cap-
turability” to which all lists were sensitive in the same way, a Rasch model (Fienberg et al., 1999)
might be appropriate. Full models such as these represent an understanding of a sampling process
and imply IAs; e.g. the independence model, begin an instance of a non-saturated hierarchical
log-linear model, implies the no-highest-order-interaction (NHOI) IA. These IAs make it in turn
possible to estimate the unobserved population. Thus, the specification of a complete-data model
can be understood as a method for translating knowledge and assumptions about listing processes
into IAs that make sense for a problem—things are, admittedly, not that simple in practice, as some
implied IAs might not constrain the CR problem enough; I will come back to this issue in the next
section.

The authors reject this procedure and instead favor modeling the IAs directly, without resorting
to complete-data models. Their stated position, however, requires us to accept two things. First,
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that useful IAs can always be neatly interpreted as corresponding to some distinct and articulable
real-life phenomenon or situation; and second, that only interpretable IAs should be considered
acceptable. I agree with neither of those premises.

Not all useful IAs admit an intuitive interpretation. A good example is the NHOI restriction
in hierarchical log-linear modeling. As the authors note, the NHOI can be notoriously difficult
to intuitively interpret as a standalone model with more than K = 3 lists. In fact, the authors
use it in their analysis of the Kosovo data as an alleged illustration the perils of unjustified IAs.
This view, however, has the problem backwards. By definition, any unsaturated hierarchical log-
linear model implies the NHOI condition. Therefore, NHOI IAs do not need to be justified on their
own: the justification of any parsimonious hierarchical log-linear model as a plausible complete-data
representation is by itself a justification for the NHOI condition.

The authors’ own analysis of the Kosovo data provides a good illustration of why I believe they
are wrong in this point. Conveniently, in this case we need not speculate about the plausibility
of estimates, as the ground truth is known to be N = 10, 401; see Manrique-Vallier (2016). The
original CR analysis, by Ball et al. (2002), used parsimonious log-linear models (and therefore,
NHOI ) and produced the estimate N̂BALL = 10, 356 (95% interval [9, 002, 12, 122]). The authors’
estimate using only the NHOI IA is N̂NHOI = 16, 941 (95% interval [5,304, 28,579]). They dismiss
it as biased, and present it as an illustration of the dangers of using an IA that cannot be justified
from the data. The problem is that both conclusions are non-sequiturs. First, the fact that Ball
et al. (2002) assumed NHOI to obtain an essentially on-point estimate should be an indication that
NHOI might, at the very least, be plausible. Second, given the former, the fact that both Ball
et al. (2002) and the authors assumed NHOI, and that Ball et al. (2002)’s interval is completely
contained within the authors’, a more reasonable explanation is that the problem with N̂NHOI is
not of bias, but—unsurprisingly, as NHOI is a saturated model—of variance. Therefore, more
reasonable conclusions would be that (1) there are IAs that are useful but difficult or impossible
to justify except as the consequence of simpler-to-justify complete-data models, and (2) avoiding
complete-data modeling and isolating IAs to use them on their own can lead to even bigger problems
than what the procedure tried to avoid—thus should not be elevated to the category of principle.

The second premise, that only interpretable IAs should be considered acceptable is also prob-
lematic, as it unnecessarily rules out otherwise effective procedures, while offering limited or no
alternatives. NHOI is an obvious example. Rasch models provide another obvious example: they
offer a natural representation of sampling under symmetric individual heterogeneity, yet their IAs
are not obviously interpretable (Fienberg et al., 1999). The same considerations apply to the reg-
ularized Latent Class models from Manrique-Vallier (2016), which offer a natural representation of
the aggregation of an unknown number of homogeneous sub-populations. I will come back to this
example to illustrate why I believe that the authors’ apprehension about non-identifiability is not
only exaggerated, but ultimately self-defeating.

The common thread to these flawed premises is the unwarranted reification of IAs. Indeed,
IAs are mathematical objects that correspond to the analytical operation of extrapolation. Then,
different from complete-data processes, which by definition correspond to the very concrete and
mundane “operation” of generating a population, they need not correspond to any obvious real-life
phenomenon. Thus, even though there might be instances of happy coincidences (like those from
Section 4.3, which are nonetheless extremely limited), expecting IAs to be both interpretable and
interpreted is an unreasonable foundation to predicate practice on.
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Figure 1: Posterior density of probability of no-capture, p0, obtained from four CR datasets simu-
lated from the same non-identifiable Latent Class model, for increasing populations sizes. Both the
true and the spurious but undecidable values are indicated with dashed lines.

3 Identifiability in CR

My second main objection is to the wisdom of rejecting non-identifiability (NI) as a matter of
principle. I contend that this is an impractically maximalist position. Moreover—and here I adopt
an unapologetic Bayesian perspective—I believe that the proposal is essentially an exercise at fixing
things that are not broken, at an unacceptably high cost.

Identifiability is a desirable property. It is often a necessary condition for establishing funda-
mental properties, like global consistency and central limit theorems. Statistical procedures that
rely on models that exhibit some form of NI often cannot offer the strong guarantees that their
identifiable counterparts can. In the case of CR, (conditional) NI occurs when there are points
in the parameter space that imply the same observable-data distributions but different population
sizes. Such procedures are structurally incapable of discriminating the plausibility of those popula-
tion sizes based on data. This is an important theoretical deficiency. Its practical relevance, though,
depends on our need for that discrimination in order to obtain reliable and useful knowledge.

The authors consider that CR procedures under NI are intrinsically unreliable, and therefore it is
imperative to avoid them. As evidence they offer a series of examples of the—alleged—failure of CR
under NI, under plausible applied scenarios. I have re-evaluated their investigation into this matter,
and found it to be thoroughly unconvincing; I provide my detailed account in a Web Supplement
accompanying this article. However I did find the exercise illuminating in a different way. For me,
far from showcasing NI as the intolerable dead-end that the authors dread, the exercise shows it as
something far less nefarious: as a potential limit (sometimes large, sometimes not) to the extent of
the knowledge that we can expect to obtain from data.

A simulated example, taken from the authors’ work, can help clarifying this idea. In this exercise
I consider one of the examples of non-identifiable models described by the authors in their Web
Supplement: a Latent Class Model (LCM) with K = 3 lists, J = 2 latent classes, and parameters
calculated according to the authors’ Theorem A.2; see Online Supplement for details. As proven by
the authors, this is a complete-data model whose induced observed-data distribution is the same as
that of another similar LCM, which nonetheless induces a different probability of no-capture, p0. I
generate four CR datasets, taken from four populations of increasing sizes N = 2000, 104, and 105,
and obtain their corresponding posterior distributions of p0 using the R package LCMCR, which
implements the regularized LCMs from Manrique-Vallier (2016).
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Figure 1 shows the posterior distribution of p0, estimated from the three simulated datasets.
We note that all posterior densities seem to concentrate within a limited region, which contains
both the true value pT0 = 0.186 and the spurious pS0 = 0.288. This is significant. It shows that
this procedure, despite being based on a non-identifiable model, still provides potentially useful
data-based knowledge in the form of posterior probability mass concentration around a relatively
small set which contains the true value. A second salient feature is that posterior densities do
not further concentrate as the population (and thus the sample) size increases. This suggests the
procedure’s inability of extracting information from data past certain limit. This can be seen as a
flaw—e.g. it correctly suggests lack of statistical consistency. However, we can also note that in all
cases the regions that concentrate almost all probability mass are as small as they can be while still
containing the two (lest we forget) undecidable-based-on-data pT0 and pS0 . Moreover, as the sample
sizes increases there seems to be a modest but noticeable bimodal concentration around pT0 and
pS0 , as we would expect. Thus, these results can also be read as evidence of the reliability of the
procedure: it will extract knowledge from data, but only up to the point allowed by both the data
and the method’s own intrinsic capacity of using it.

The main lesson of this exercise should be evident: NI is real and it does have an effect in CR
procedures; however its mere presence does not automatically render a method useless. Moreover,
the limited knowledge obtainable from a reasonably well justified non-identifiable procedure is still
more useful than the no-knowledge afforded by the authors’ nihilistic advise (“[if ] none of the
[IAs] discussed in this article [is appropriate, then] no estimation of the population size should be
produced based on the data at hand.”). Similarly, if data were actually generated from a process
unable to produce datasets with enough information for discriminating the true population size from
an incorrect alternative—as the one in our example—I would consider the humble, but trustworthy,
inferences based on procedures that abide by that limitation to be preferable to the false sense of
security afforded by more comforting, but potentially misleading, identifiable alternatives.

There are still several important additional factors to consider in this discussion. It will not
always be the case that NI allows relatively concentrated posterior distributions—this happened in
our example because both the actual and spurious values of p0 were relatively close to one another.
If that were not the case, we would end up with either clearly multimodal or fairly wide posterior
distributions. These might not be the easiest to interpret, but would nonetheless be informative. A
related issue is that practical Bayesian procedures seldom distribute prior probability mass uniformly
over the parameter space, thus procedures under true NI conditions will actually favor some of the
undecidable alternatives over others; not because of the data, but because of the prior. This can
be observed in our example, in Figure 1. There we see that the posterior density of the spurious
value pS0 is smaller than that of the true value pT0 , even though they are in principle undecidable
from data. In this instance, this occurs because the current implementation of the procedures, in
LCMCR, in addition to a priori favoring sparse mixtures (due to the regularizing effect of a stick-
breaking prior), also a priori favors mixture components with small probabilities of no-capture
(due to hard-coded hyper-parameter choices). This weakly informative prior can be adequate for
applications in which conservative estimates are preferred, but may not be appropriate for others.
I am currently working in a revision to the LCMCR package that will give the user a greater level
of control over this specification.

None of these issues, however, are solved by proscribing procedures, nor by attempting to fix
them with the addition of not-yet-discovered but supposedly justifiable additional IAs. If anything,
they call for good old-fashioned research into the properties of specific procedures and, importantly,
into their potential effects in statistical practice. It also showcases the need for more research into
the specification of weakly informative prior distributions—e.g. I am currently working on methods
for translating the almost always available knowledge about reasonable bounds on the extent of
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sampling coverage into workable prior specifications for RLCMCR models.

4 Conclusion

In this note I have laid out my case against the authors’ proposal. Summarizing, I find it to be
neither a practical solution to a problem, nor a good starting point for better practice. The posture
is of unyielding prescriptivism. This leads to a logically consistent and elegant framework, that is
nonetheless unworkable and hindering. Unworkable, because it unreasonably requires the general
ability of interpreting IAs. Hindering, because it rules out potentially useful tools without offering
good alternatives: methods that do not neatly conform to the prescription, e.g. those that imply
too-complex-for-interpretation IAs; and methods that can be sub-optimal, but that nonetheless can
still provide useful knowledge in practice, e.g. methods that may exhibit NI.
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Supporting Information

Web Appendices referenced in Section 3 are available with this paper at the Biometrics website on
Wiley Online Library. Computer code to reproduce the results presented in this article and the
Supplement is also available there.
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