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Abstract

We introduce a new Bayesian non-parametric method for estimating the size of

a closed population from multiple-recapture data. Our method, based on Dirichlet

process mixtures, can accommodate complex patterns of heterogeneity of capture, and

can transparently modulate its complexity without a separate model selection step.

Additionally, it can handle the massively sparse contingency tables generated by large

numbers of recaptures with moderate sample sizes. We develop an efficient and scalable

MCMC algorithm for estimation. We apply our method to simulated data, and to two

examples from the literature of estimation of casualties in armed conflicts.

Keywords: Capture-Recapture; Casualties in conflicts; Dirichlet process mixtures; Latent

class models; Model selection.

1 Introduction

Starting with the work of Sanathanan (1972) and Fienberg (1972), and the development

of methods for analyzing discrete multivariate data, the literature in multiple-recapture
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and multiple systems estimation has devoted considerable attention to departures from the

basic assumptions of independence and homogeneity prevalent in earlier work; e.g. Darroch

(1958); Cormack (1968). In particular, several methods designed to accommodate individual

heterogeneity structures have been proposed (e.g. Sanathanan, 1972; Fienberg et al., 1999;

Manrique-Vallier and Fienberg, 2008). Similar proposals have also been developed in the

animal estimation literature (e.g. Norris and Pollock, 1996).

Finite mixture models are a special class of methods for heterogeneous populations that

arises naturally as the representation of the aggregation of two or more distinct homoge-

neous subpopulations. Their application to multiple-recapture (e.g. Norris and Pollock, 1996;

Basu and Ebrahimi, 2001) can be considered model-based analogous to stratified multiple-

recapture estimation (e.g. Sekar and Deming, 1949) in the absence of covariate information.

These models can in principle accommodate arbitrarily complex joint distributions, as long

as the number of mixture components is adequately selected (Vermunt et al., 2008).

In this paper we introduce a fully Bayesian multiple-recapture method based on Dirich-

let process mixtures of product-Bernoulli distributions, originally introduced by Dunson and

Xing (2009) as a general-purpose method for modeling sparse contingency tables, and mod-

ified for handling structural zeros by Manrique-Vallier and Reiter (2014). This model has

some similarities with finite mixture models but differs in that it does not require the spec-

ification of the number of mixture components in advance. Instead, it considers an infinite

number of them, and favors a data-learned sparse representation by placing most of the

probability mass into a small finite subset. It also bears some similarities with approaches

based on model averaging (e.g. Madigan and York, 1997; Arnold et al., 2010) in that it

incorporates dimensionality uncertainty into estimates. A major advantage of our method

is its computational expediency, and its robustness in conditions of extreme cell sparsity.

The rest of this article is organized as follows. In Section 2 we describe the general

problem of closed population multinomial multiple-recapture estimation from a missing data
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perspective. In Section 3 we introduce the Bayesian Non-Parametric Latent Class model

(NPLCM) as a flexible alternative for modeling heterogeneity, and adapt it to the multiple-

recapture problem. In Section 4 we outline an efficient Markov chain Monte Carlo sampling

algorithm for posterior simulation from our model. In Section 5 we apply our method to

simulated data and to two examples taken from the literature on estimation of casualties in

armed conflicts. We conclude with a discussion about the limitations of our method, some

potential uses, and possible extensions.

2 General Framework for Multinomial Multiple-Recapture

Estimation

Building on ideas from Fienberg and Manrique-Vallier (2009), we frame multiple-recapture

estimation as a missing data problem (Little and Rubin, 2002). Let us consider a closed

finite population of N individuals. We assume that each individual can be either listed

or missed by any of J lists that partially enumerate that population. We write xij = 1

to indicate that individual i ∈ {1, ..., N} was captured by list j ∈ {1, ..., J}, and xij = 0

to indicate otherwise. We group these capture indicators into individual capture vectors,

xi = (xi1, ..., xiJ) ∈ {0, 1}J . For example, a capture vector xi = (0, 1, 0, 0) denotes an

individual that has only been recorded in list j = 2, from J = 4 lists. We observe that any

individual with a capture vector composed uniquely of zeros, 0 = (0, ..., 0), is by definition

unobserved, and therefore cannot be present in any (combined or otherwise) sample. Let

n =
∑N

i=1 I(xi 6= 0) be the number of observed individuals. Here I(·) takes the value 1

if the condition in the argument is true and 0 otherwise. Our task is to determine the

number of unobserved individuals, n0 =
∑N

i=1 I(xi = 0) or, equivalently, the population size

N = n+ n0.

Following missing data ideas, we consider a complete data generation process and a non-
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ignorable missing data mechanism. Let the complete data generation process be f(x|θ)

for x ∈ {0, 1}J , such that xi
iid∼ f(x|θ) for i = 1, ..., N with N known. The corresponding

missing data mechanism consists of simply not observing individuals with a capture vector

0. Reordering the sequence of xis so that all the unobservable capture vectors are grouped

together at the end of the sequence—this is, at positions i = n+ 1, ..., N—we get

p(X | θ,N) =

(
N

n

)
f(0|θ)N−n

n∏
i=1

f(xi|θ)I(N ≥ n), (1)

where X = (x1, ...,xn). Here we use the symbol p(·) to denote the density or probability mass

function of the argument, to be deduced from context. In the multiple-recapture problem

both N and θ are unknown and have to be estimated. We do this by specifying a prior

distribution p(N, θ) and computing p(N, θ|X ) ∝ p(N, θ)p(X|θ,N).

3 Modeling Heterogeneity Using the Latent Class Model

The complete-data generating distribution, f(x|θ), summarizes our assumptions about the

characteristics of the sampling process. For example, the independence model,

f(x|λ1, ..., λJ) =
J∏

j=1

λ
xj

j (1− λj)1−xj , (2)

is often an adequate representation of the capture vector distribution when it is known that

listing processes are independent. When this assumption holds reasonably well, methods

based on (2) usually produce good estimates of the population size. However, when this is

not the case, these models are notorious for producing unreliable estimates and misstating the

sampling variability (Fienberg, 1972; International Working Group for Disease Monitoring

and Forecasting, 1995; Fienberg et al., 1999).

An often recommended strategy when independence assumptions do not hold appropri-
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ately is to take advantage of some form of stratification scheme (Sekar and Deming, 1949;

Fienberg, 1972). The idea is to segment the population into relatively homogeneous classes

where simple models, like independence, can be expected to hold better; then apply those

simple models on each individual stratum to produce estimates of the population size. Of

course this approach is only possible when the covariate information needed to construct

such stratification exists, and is closely related to the source of sampling heterogeneity.

In the absence of an appropriate stratification scheme we can consider it missing data.

Let us assume that the population admits a partition into K homogeneous strata, such that

the independence model holds within each of them. Let π = (π1, ..., πK) with
∑K

k=1 πk = 1

and πk > 0 be the vector of strata probabilities. Then the probability mass function of the

capture vectors is

p(x|λ,π) =
K∑
k=1

πk

J∏
j=1

λ
xj

jk(1− λjk)1−xj , (3)

where λ = (λjk) with λjk ∈ (0, 1). This is a mixture model for which each component is an

independence model like (2), with stratum-specific parameters. As with any other mixture,

it admits an augmented data representation as the two-step process:

xj|z
indep∼ Bernoulli(λjz) for j = 1, ..., J

z ∼ Discrete ({1, 2, ..., K}, (π1, ..., πK)) . (4)

Here z is a latent variable that explicitly represents stratum assignment.

The mixture of product-Bernoulli distributions in (3) is known as the Latent Class Model

(LCM; Goodman, 1974; Haberman, 1979). LCMs are often used as model-based clustering

devices for discovering and characterizing latent sub-populations within a heterogeneous

population, based on multivariate discrete observable attributes. Similar to other latent
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variable strategies, LCM modeling assumes that dependency between coordinates of the

observed response vector, x, can be fully explained by the introduction of an unobserved

variable—in this case z ∈ {1, ..., K} (Haberman, 1979).

Perhaps more importantly for our purposes, LCMs are also useful as general-purpose

models for contingency tables with arbitrarily complex patterns of dependence between vari-

ables, even if they are not directly motivated as the representation of a stratified data

generation process (e.g. Vermunt et al., 2008; Si and Reiter, 2013). It is known (Dunson and

Xing, 2009) that the mixture in (3) can represent any possible discrete distribution in the

space {0, 1}J . For it to be useful in applications, however, we still need to solve the model

selection problem of choosing an appropriate number of latent classes, K.

3.1 The Non-parametric LCM

Dunson and Xing (2009) proposed a Bayesian nonparametric extension to the LCM that

overcomes the need of specifying the number of mixture components in advance, while si-

multaneously enforcing data-learned sparsity into the mixture. Instead of trying to find a

“best” finite number of latent classes, they proposed to use an infinite number of them si-

multaneously, combined with a prior specification that induces sparsity into the mixture by

concentrating most of the probability mass into a small finite subset. The resulting model,

an infinite-dimensional mixture of product-multinomial distributions, retains the simplicity

and expressiveness of the original LCM, but avoids the model selection problem of having

to find an appropriate number latent classes, K. Additionally, it acts as a model averaging

device that propagates the uncertainty of the model dimensionality into estimates.

The non-parametric LCM (henceforth NPLCM) from Dunson and Xing (2009) is a Dirich-

let process mixture of product-Bernoulli distributions. It can be described through the hi-
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erarchical generative process

xj|z
indep∼ Bernoulli(λjz) for j = 1, ..., J

z ∼ Discrete ({1, 2, ...}, (π1, π2, ...))

λjk
iid∼Beta(1, 1) for j = 1, ..., J and k = 1, 2, ...

(π1, π2, ...) ∼ SB(α)

α ∼ Gamma(a, b), (5)

where SB(α) is the stick-breaking process with parameter α > 0 (Sethuraman, 1994). The

stick breaking specification for π has the effect of concentrating the bulk of the probability

mass into its first few coordinates, thus inducing sparsity into the mixture and avoiding

overfitting. The prior distribution on α allows us to estimate the effective dimensionality

of the mixture from the data; see Gelman et al. (2013) p. 553, for a discussion of this

specification.

In practice, we use a finite-dimensional approximation whereby we select a large-enough

upper bound for the number of latent classes, K∗ (Ishwaran and James, 2001). We define the

finite-dimensional stick-breaking prior, (π1, ..., πK∗) ∼ SBK∗(α), by making πk = Vk
∏

h<k(1−

Vh) for VK∗ = 1 and V1, ..., VK∗−1
iid∼Beta(1, α). We note that this truncation is only a

computationally convenient approximation; we do not consider K∗ to be a parameter in the

model as in a regular finite mixtures. As we will see in the examples, as long as most of

the posterior probability mass ends up concentrated on a subset of components smaller than

K∗, the exact value of K∗ does not have any noticeable impact on the estimates.

As Si and Reiter (2013) demonstrate in an application involving contingency tables with

more than 1030 cells, this specification can model complex and very high-dimensional discrete

joint distributions in a parsimonious way. It also has the computational advantage of allowing

the use of the blocked Gibbs algorithm from Ishwaran and James (2001), and the extension
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for truncated supports from Manrique-Vallier and Reiter (2014).

3.2 The NPLCM Multiple-Recapture Model

Returning to our original problem of estimating the unknown size of a closed population,

we obtain a joint model for the observable sample (this is, those units with capture patterns

different from 0) by plugging the LCM probability mass function from equation (3) into the

general multiple-recapture multinomial model described in (1),

p(X|λ,π, N) ∝
(
N

n

)[ K∗∑
k=1

πk

J∏
j=1

(1− λjk)

]N−n n∏
i=1

K∗∑
k=1

πk

J∏
j=1

λ
xij

jk (1− λjk)1−xij . (6)

Using the latent variable representation from (4), we see that (6) is equivalent to a marginal-

ized version of the augmented data representation

p(X , z, z0|λ, π,N) ∝
(
N

n

) n0∏
i=1

πz0i

J∏
j=1

(1− λjz0i )×
n∏

i=1

πzi

J∏
j=1

λ
xij

jzi
(1− λjzi)1−xij , (7)

where z = (z1, ..., zn) and z0 = (z01 , ..., z
0
n0

), and both zi and z0i take values on the set

{1, ..., K∗} for each i = 1, . . . , n.

We complete a full Bayesian specification by choosing prior distributions for parameters

π, and N . Following advice from Dunson and Xing (2009) and Si and Reiter (2013) we

choose α ∼ Gamma(0.25, 0.25) as a default diffuse specification. We comment more on this

choice in Section 5. For the total population size, we choose the improper discrete prior

distribution p(N) ∝ 1/N . This specification, which corresponds to the Jeffreys’ prior for

N , has several advantages. First, it has been shown to produce good results, and to avoid

some paradoxical behaviors of the posterior (Link, 2013). Second, it makes the posterior

distribution estimates match (after renormalization) those of an NPLCM truncated at the 0

cell (Manrique-Vallier and Reiter, 2014). Finally, it results in simple closed-form Gibbs steps
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in the algorithm we propose in the next section. As usual, other specifications are possible, if

prior knowledge is available. In particular, as Fienberg et al. (1999) note, prior distributions

of the form p(N) ∝ (N − l)!(N !)−1 for l = 1, ..., N − 1 comprise important special cases and

lead to simple conditional posterior distributions.

4 Estimation Via Markov Chain Monte Carlo

The augmented data representation in (7) leads naturally to MCMC algorithms based Gibbs

sampling schemes that exploit the conditional independence given latent variables structure.

However, the fact that the length of the vector z0 is exactly equal to n0 = N − n, entails

additional difficulties. Since N is itself a parameter to estimate, it is not possible to construct

valid Gibbs sampling algorithms by simply deriving full conditional distributions for N and

each z0i , because it would result in a reducible Markov chain. This difficulty was identified

by Basu and Ebrahimi (2001), who proposed to overcome it by jointly sampling N and

the latent variables (in this case z0) using a conditional decomposition. This idea was also

exploited by Fienberg et al. (1999) and Manrique-Vallier and Fienberg (2008) in the context

of multiple-recapture, and adapted and extended by Manrique-Vallier and Reiter (2014) as

general method to sample from the NPLCM subject to complex structural zero restrictions.

In principle, the general technique from Manrique-Vallier and Reiter (2014) is directly

applicable to this problem. However, the special structure of the multiple-recapture problem,

where only one cell is unobservable, allows for further simplifications. Let ω = (ω1, ..., ωK∗),

with ωk =
∑n0

i=1 I(z0i = k). Here ωk denotes the number of unobserved individuals that
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belong to latent class k. Then we get the representation

p(X , z,ω|λ,π, N) =

(
N

n, ω1, · · · , ωK∗

) K∗∏
k=1

(
πk

J∏
j=1

(1− λjk)

)ωk

×
n∏

i=1

πzi

J∏
j=1

λ
xij

jzi
(1− λjzi)1−xij × I

(
K∗∑
k=1

ωk = N − n

)
. (8)

It is easy to see that (8) is equivalent to (6) after marginalizing over z and ω.

Now we show how to construct a Gibbs sampler algorithm for obtaining samples from

the posterior distribution of parameters for this model, including the population size, N .

Here we use the prior distributions proposed in Section 3.2. The first steps are similar to

those proposed by Manrique-Vallier and Reiter (2014).

1. Sample from p(z|...): For i = 1, ..., n, sample zi ∼ Discrete({1, ..., K∗}, (p1, ..., pK∗)),

with pk ∝ πk
∏J

j=1 λ
xij

jk (1− λjk)1−xij .

2. Sample from p(λ|...): For j = 1, . . . , J and k = 1, . . . , K∗ let nk =
∑n

i=1 I(zi = k) and

njk =
∑n

i=1 I(xij = 1, zi = k). Then sample λjk ∼ Beta (njk + 1, nk − njk + ωk + 1) .

3. Sample from p(π|...): For k = 1, ..., K∗ − 1 sample

Vk ∼ Beta

(
1 + νk, α +

K∗∑
h=k+1

νh

)

where νk = nk + ωk. Let V ∗
K = 1 and make πk = Vk

∏
h<k(1− Vh) for all k = 1, ..., K∗.

4. Sample from p(α|...): α ∼ Gamma(a− 1 +K∗, b− log πK∗)

5. Sample from p(N,ω|...): The full joint conditional distribution of ω and N is

p(ω, N |λ, z, α,π,X ) ∝ p(N)
n0!

ω1! · · ·ωK∗ !
ρω1
1 · · · ρ

ωK∗
K∗ × I(N = n+ n0) (9)

10



where n0 =
∑K∗

k=1 ωk and ρk = πk
∏J

j=1(1 − λjk). For P (N) ∝ 1/N this is a negative

multinomial distribution—note we are not conditioning on N , and that N is completely

determined by ω. Thus we obtain samples from this distribution by compounding a

negative binomial with a multinomial distribution (Sibuya et al., 1964):

(a) Sample n0 ∼ NegBinomial
(
n, 1−

∑K∗

k=1 πk
∏J

j=1(1− λjk)
)

. Make N = n+ n0.

(b) Sample (ω1, ..., ωK∗) ∼ Multinomial(n0, (p1, ..., pK∗)) for pk ∝ ρk.

We note that in spite of the complexity of the NPLCM, the proposed Gibbs sampler

algorithm is remarkably simple, consisting only of sampling steps from standard distribu-

tions. Additionally, it only requires sampling K∗ × (J + 2) + n + 1 variates per iteration.

This makes it highly scalable, both on the number of lists, J , and sample size. We also note

that, different from other Bayesian latent variable proposals (Fienberg et al., 1999; Basu and

Ebrahimi, 2001; Manrique-Vallier and Fienberg, 2008) whose computational cost depends

on the unknown n0, the computational cost of this algorithm is fixed.

5 Example Applications

We applied our method to simulated data and to two multiple-recapture datasets taken from

the literature on casualty estimation in armed conflicts. The first real dataset consists of

four incomplete overlapping lists documenting killings during the Kosovo war (Ball et al.,

2002). The second is a collection of 15 matched lists documenting killings due to political

violence in Casanare, Colombia (Lum et al., 2010). In the Supplemental materials online

we include an additional example using a classical small-sample dataset from the ecological

literature.

For comparison, we also fit the independence and, where possible, more complex log-linear

models (Fienberg, 1972). We do not expect simple independence models to provide good
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estimates due to the strong capture heterogeneity in our examples. Rather, we take them as

an indication of its severity. The other log-linear models have been selected by minimizing the

BIC index over the whole class of hierarchical log-linear models. This replicates a common

practice in applied multi-list problems in human populations (see e.g. Hook and Regal, 2000),

and in some sense seeks to give the class log-linear models the best possible chance of fitting

the data and producing reasonable estimates. We performed the model search using the

routines included in the package Rcapture (Baillargeon and Rivest, 2007).

In all examples we used the prior distributions described in Section 3.2. We have per-

formed additional experiments investigating the sensitivity of our method to different choices

of hyper-parameters in the prior specification α. ‘Our results, which can be consulted in the

Supplemental Materials online, show that posterior inference about N is relatively insensitive

to the broad range of prior specifications on α that we examine. We have set the maximum

number of latent classes, K∗, in each example so that a fair number of them were estimated

with negligible probability. A practical way for choosing such K∗ is to initially set it to be

the number of unique capture histories, and then decrease it, if possible, ensuring that still a

fair number of the estimated latent classes still end up estimated with negligible probability.

We note that under such conditions increasing K∗ results largely in the same estimates of N .

For summarizing the posterior distribution of the NPLCM we have used posterior medians

as point estimates, and equal-tail 95% posterior intervals as interval estimators.

5.1 Simulated Data

We simulated the repeated multiple-recapture of a heterogeneous population of N = 2000

units by J = 5 lists. To induce heterogeneity we randomly split the population into two

strata, with proportions 0.9 and 0.1, and allowed each list to include each individual with

different probabilities, depending on stratum membership. We set stratum-level capture

probabilities so that units in the largest stratum have small chance (between 0.033 and 0.132)
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Table 1: Listing parameters for simulation experiment. For N = 2000 the expected observed
sample size is E[n] = 727.

List capture probabilities
Stratum Proportion List 1 List 2 List 3 List 4 List 5
1 0.9 0.033 0.033 0.099 0.132 0.033
2 0.1 0.660 0.825 0.759 0.990 0.693

to get included, while individuals on the other have much larger probabilities (between 0.66

and 0.99); see Table 1. This specification mimics a commonly found situation in human

populations where most people have a relatively small probability of being listed, but there

exists a small subset (famous people, for instance) for which this probability is much higher.

We repeated this procedure 200 times to obtain 200 different multiple-recapture samples.

Note that according to this design the expected number of observed individuals in each

sample is E[n] = 727, which represents only about 36.4% of the actual population size.

We have also fit independence log-linear models to the stratified data, one per stratum,

using the actual assignment labels. We expect this procedure to produce the best possible

estimates of the total population size, as it basically reproduces the data-generation process,

and directly removes the source of the heterogeneity. It also benefits from information

unavailable to the other models. For this reason the quality of these estimates is in principle

unattainable by the other models. We have computed these estimates as means of obtaining

an upper bound on the quality of the estimates that we can expect to get from these data.

Table 2 summarizes our results. All quantities are averages over 200 trials. As expected,

the independence model fits the data poorly, severely underestimating the population size

with an average estimate of 825.1. It also produces deceptively tight 95% confidence intervals,

which result in an empirical coverage rate of 0%. BIC-selected log-linear models also perform

poorly, this time overestimating the true counts by a factor of more than six and producing

95% confidence intervals that also fail to cover the true value every time. Log-linear models

also performed poorly in terms of their mean squared error, which in both cases were several
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Table 2: Summary of simulation results over 200 experiments with N = 2000 and E[n] =
727. (*)Note that ‘Stratified” estimates have been obtained using stratification information
unavailable to the other models.

Model Mean N̂ Mean
CI width

MSE Empirical
Coverage

NPLCM 1935.8 868.83 49038.44 0.92
Independence 825.1 55.032 1381033.6 0
BIC-log linear 13432.0 988.49 164355253.2 0
Stratified (*) 2014.8 796.126 43099.8 0.96

orders of magnitude larger than that of the stratified model.

The NPLCM model, in contrast, produced very good estimates with a mean estimate

of 1935.2. Credible intervals are short, and have an empirical coverage rate of 92%. These

results are, as expected, inferior to those obtained through stratified estimation—marked

with an asterisk in Table 2. However they are very close. In fact, the mean squared error of

the NPLCM estimates is only about 14% larger than that from the stratified estimates—cf.

3104% and 381236% for the independence and BIC-selected models, respectively.

The remarkable performance of the NPLCM in this example might come as no surprise

to some, given that we have generated the data through a stratified procedure akin to an

LCM. However we note that the actual data generation process involved exactly two strata,

while the NPLCM was fitted with a much higher upper truncation level (K∗ = 10 in the

full experiment; K∗ = 30 in some initial tests). This means that in order to produce these

results, the NPLCM has extracted underlying dimensionality of the mixture directly from

the data, without any extra information.

5.2 Killings in Kosovo

Ball et al. (2002) used multiple-recapture data to estimate the number of casualties during

the Kosovo war from March 20 to June 22, 1999. We reproduce this dataset in Table 3. It

consists of J = 4 lists that jointly document n = 4400 observed killings. Using a parsimonious
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Table 3: Kosovo data (J = 4, n = 4400). Source: Ball et al. (2002).
List 1

Yes No
List 2 List 2

Yes No Yes No

List 3
Yes List 4

Yes 27 32 42 123
No 18 31 106 306

No List 4
Yes 181 217 228 936
No 177 845 1131 ??

log-linear model, Ball et al. (2002) estimated that a total of N̂ = 10356 (95% confidence

interval [9002, 12122]) people were killed during that period.

This dataset makes an interesting test case because of the existence of an additional

near-census enumeration. As part of an ambitious documentation project named the “Kosovo

Memory Book”, the Serbia-based Humanitarian Law Center (HLC) has compiled what some

believe (Krüger and Ball, 2014; Spagat, 2014) to be a near-exhaustive list of casualties. We

have used these data (Humanitarian Law Center, 2014) to produce a list of casualties for

the same period considered by Ball et al. (2002). This results in a total of NHLC = 10401

casualties. We note that this is a simple count, not a multiple-recapture estimate. We

consider this number to be our benchmark for evaluation.

Table 4 details our results. The independence model again performed poorly, underesti-

mating the number of casualties as N̂ = 7393, with a 95% interval that does not cover the

benchmark. The BIC-based model selection procedure fared better, producing the estimate

N̂ = 10335, similar to the count from the HLC and to the estimate from Ball et al. (2002).

The NPLCM produced excellent results, with a point estimate N̂ = 10442. Figure 1

shows the posterior distribution of the population size N . We see that the posterior disper-

sion of N is rather large, with a 95% credible interval [9020, 13637]. This interval is wider

than that of the BIC selected log-linear model, at [8994, 12110]. Even though these two

intervals have been constructed under different considerations, it is interesting to note that
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Table 4: Estimates from examples with real data. Row marked (*) correspond to the census-
like count from the Humanitarian Law Center.

Example Model N̂ CI95%
Kosovo HLC count (*) 10401 —
(n = 4400, J = 4) NPLCM 10442 [9020.0, 13637.0]

Indendence 7392.9 [7147.7, 7656.2]
BIC-Loglin ([123][14][34]) 10334.5 [8994.3, 12110.4]

Casanare NPLCM 4734 [4073, 5887]
(n = 2629, J = 15) Indendence 3733 [3605, 3873]

this discrepancy should be expected. Confidence intervals for multiple-recapture estimates

are usually constructed conditioning on a selected model. This means that the BIC log-

linear estimates ignore the sampling variability inherent to the data-based model selection.

In contrast, the NPLCM model simultaneously estimates all the parameters of the model,

including the population size and the effective dimensionality of the mixture.

5.3 Killings in Casanare

Lum et al. (2010) analyzed multi-list data documenting n = 2629 deaths due to political

violence in the Casanare department, Colombia. This dataset has also being analyzed by

Mitchell et al. (2013), and a previous version by Guzmán et al. (2007). We reproduce the

data in the Supplemental Materials online. Different from most cases found in the casualty

estimation literature, this dataset has been constructed from a large number of independently

collected lists, J = 15. Using a Bayesian model averaging approach, considering only three

lists at a time, Lum et al. (2010) estimated N̂ = 5832 (95% interval [3822, 9332]) killings.

The large number of lists in this example presents unique challenges. In principle, a

large number of lists should benefit the estimation efforts, as it can potentially provide

great detail on the patterns of recapture heterogeneity. However, a large number of lists

also imply that, for typical sample sizes, many of the possible capture patterns will not be
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Figure 1: Posterior distribution of total population size for Kosovo data. Discontinuous
vertical line show the point estimate (posterior median) N̂ = 10442; Continuous vertical line
shows the near-census enumeration form the Humanitarian Law Center at NHLC = 10401

observed. In this example J = 15 lists define a contingency table with 215 = 32768 cells,

from which only 70 are actually present in the sample (see Supplemental Materials). This

situation of extreme sparsity, in which 99.79% of the contingency table is empty, makes the

use of traditional approaches, for example those based on Maximum likelihood estimation like

log-linear models, extremely difficult. Additionally, the large dimensionality increases the

number of possible models to fit to the data, making the model selection issue an even more

pressing problem: not only the pool of possible models (for example, the family of hierarchical

log-linear models) is impractically large to assess exhaustively, but the usual tests of fit are

no longer valid because of the breakdown of the usual asymptotic approximations based on

the χ2 distribution due to sparsity (Fienberg and Rinaldo, 2007).

Table 4 summarizes our results. The independence model leads to the estimate N̂ = 3733,

with a 95% confidence interval [4073, 5887]. Surprisingly, this simple model appears to fit the

data well, with a deviance of only 1555 on 32751 degrees of freedom. However, repeating the

assessment, this time using Pearson’s X2 as our fit statistic—which also has a limiting χ2
32751
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distribution—we reach the opposite conclusion, withX2 ≈ 2.146×1011 on the same degrees of

freedom. This apparent contradiction points to the breakdown of asymptotic approximations

based on the χ2 distribution in sparse high-dimensional contingency tables, and thus to the

difficulties involved in assessing model fit using traditional techniques. In a similar way,

we were unable to perform the BIC-based model selection because sparsity prevented us

from fitting most complex log-linear models. These difficulties have also plagued previous

analyses, which had to be performed either selecting subsets lists at a time or collapsing

some of them (Guzmán et al., 2007; Lum et al., 2010).

In contrast, we fitted the NPLCM using all the J = 15 lists simultaneously without

problems. This led to the estimate N̂ = 4734, with a 95% credible interval [4073, 5887].

Figure 2 shows the first four mixture components identified by our model, which account for

an estimated 99.46% of the total strata probability mass. From this plot it is clear that the

NPLCM has identified a highly heterogeneous structure within the data, where probabilities

of capture by lists vary greatly from one stratum to the other.

6 Discussion

As Dunson and Xing (2009) show, the Bayesian NPLCM has full support on the (2J − 1)-

dimensional probability simplex, and is therefore consistent for estimating probabilities in

any contingency table. Thus, having shown the effectiveness and computational conve-

nience of our method, we may be tempted to see the it as a sort of silver bullet that al-

lows assumption-free multiple-recapture estimation. Unfortunately such belief would be

unfounded. In general, “non-parametric multiple-recapture estimation” is somewhat of a

misnomer. As Fienberg (1972) warns, multiple-recapture estimation—as any other extrap-

olation technique—relies on the untestable assumption that the model that describes the

observed counts also applies to the unobserved ones. This makes the problem essentially
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Figure 2: Posterior estimates of mixture-component capture probabilities for Casanare data.
Only showing the first four components with the highest posterior probabilities (99.46% of
total strata probability mass).
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non-identifiable in the sense that we can produce infinite models that assign different prob-

abilities for the unobserved cell 0 and the same set of probabilities to cells in {0, 1}J \ {0}.

We note that this is an intrinsic limitation of multiple-recapture estimation, regardless of the

particular implementation. This was also observed by Link (2003) in the simpler context of

binomial estimation with heterogeneity.

This intrinsic limitation notwithstanding, we believe that our method should be valuable

tool for practitioners working in a broad class of problems. In particular, the interpretation

of the NPLCM as the aggregation of homogeneous strata matches our intuition about the

data generation process in many applied situations, especially in human populations. For

example, in our examples estimating casualties in conflicts it is reasonable to attribute most

of the dependence between lists to individual characteristics—like social visibility, or party

allegiance—which make specific individuals more or less prone to be listed. We can think of

similar situations in related domains like epidemiology and census corrections.

Although all of our examples have been applications to human populations, this method
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should in principle also work in animal abundance estimation problems. As an example,

we have developed an illustrative application with a small sample size of n = 68 which we

detail in the Supplemental materials section. However, we should note some particularities of

the animal case that could make our approach not an optimal one. Most capture-recapture

datasets in animal abundance estimation are the product of carefully designed experiments,

in which investigators have complete control over several of the variables that drive the

sampling. This allows them make some reasonably strong assumptions about the structure

of the joint distribution of capture patterns. In contrast, the NPLCM is a distributionally

agnostic method, which tries to estimate the joint distribution directly from the data as

much as it is possible. This makes it a very attractive alternative for the estimation of

elusive human populations using matched found data. However, in ecology problems—which

typically deal with small sample sizes and large numbers of recaptures—we might be wasting

inferential power in trying to fit such a general model, when we could get more traction by

assuming a stronger structure, such as the sub-models of the Mthb family (Otis et al., 1978).

Our method relies only on capture pattern information for both characterizing hetero-

geneity, and estimating the total population size. A natural extension would be to adapt

it to incorporate covariate information when it is available. This could be done by making

the latent-class weights directly dependent on the covariates using, for example, covariate-

dependent stick-breaking formulations (e.g. Dunson and Park, 2008); or by introducing such

dependency through the latent class listing probabilities (the λs). We note that, in either

case, such an extension would have account for the fact that covariates for non observed

individuals are also unknown (see e.g. Tounkara and Rivest, 2015). This will be the focus of

future research.
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