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Abstract

In multivariate categorical data, models based on conditional independence assump-

tions, such as latent class models, offer efficient estimation of complex dependencies.

However, Bayesian versions of latent structure models for categorical data typically do

not appropriately handle impossible combinations of variables, also known as structural

zeros. Allowing non-zero probability for impossible combinations results in inaccurate

estimates of joint and conditional probabilities, even for feasible combinations. We

present an approach for estimating posterior distributions in Bayesian latent structure

models with potentially many structural zeros. The basic idea is to treat the observed

data as a truncated sample from an augmented dataset, thereby allowing us to exploit

the conditional independence assumptions for computational expediency. As part of

the approach, we develop an algorithm for collapsing a large set of structural zero

combinations into a much smaller set of disjoint marginal conditions, which greatly

speeds computation. We apply the approach to sample from a semi-parametric ver-

sion of the latent class model with structural zeros in the context of a key issue faced

by national statistical agencies seeking to disseminate confidential data to the public:

estimating the number of records in a sample that are unique in the population on a
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set of publicly available categorical variables. The latent class model offers remarkably

accurate estimates of population uniqueness, even in the presence of a large number of

structural zeros.

KEY WORDS: Contingency table; Confidentiality; Disclosure Risk; Latent class; Dirich-

let Process; Multinomial.

1 Introduction

For multivariate categorical data x, models based on latent conditional independence

assumptions enable analysts to estimate joint and conditional probabilities with com-

putationally efficient algorithms. Such models include, for example, latent class mod-

els (Goodman, 1974; Lazarsfeld and Henry, 1968), Rasch models (Rasch, 1980), and

Grade of Membership models (Woodbury et al., 1978). These can be viewed as mixture

models that use an auxiliary (latent) variable z to decouple the dependence structure

among components of x; that is, given z the components of x are assumed independent

(Holland and Rosenbaum, 1986). By averaging component-specific probabilities over

many components, latent structure models can encode arbitrarily complex dependence

structure in x (Suppes and Zanotti, 1981; Sijtsma and Junker, 2006).

Many categorical datasets include structural zeros (Goodman, 1968; Bishop et al.,

1975). These arise when certain combinations of responses are impossible, for example,

pregnant men or married children. They also arise when particular combinations of cat-

egories are unobservable by design, for example, non-recorded individuals in multiple

recapture-experiments (Fienberg, 1972). Fitting latent structure models (LSMs) with-

out explicitly accounting for structural zeros can result in inaccurate estimates of joint

and conditional probabilities, even for feasible combinations. This is because allow-

ing non-zero probabilities for impossible combinations can pull probability mass away

from feasible combinations. Models and estimation routines that account for structural

zeros have been developed for non-Bayesian versions of LSMs (e.g., Vermunt, 1997);
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however, to our knowledge, these have not been developed for Bayesian versions of

LSMs. We note that structural zeros can be incorporated in other approaches for es-

timating contingency table probabilities, including methods based on loglinear models

(Bishop et al., 1975), Markov bases (e.g., Dobra, 2012), and importance sampling (e.g.,

Dinwoodie and Chen, 2011).

In this article, we present a general approach and MCMC samplers for Bayesian

estimation of latent structure models when the data include structural zeros. The

basic idea is to view the data for the feasible combinations as a truncated version of

an augmented dataset of unknown size comprising all combinations of x. The MCMC

sampler proceeds by iteratively (i) imputing counts to create a completed, augmented

dataset and (ii) drawing parameters from the model based on the completed data.

Key to our approach is a computational algorithm that collapses many structural zero

combinations into much smaller sets of marginal conditions. This algorithm allows

us to exploit the conditional independence structure to handle even large numbers of

structural zeros in a computationally efficient manner. We apply the truncated latent

structure models to estimate the number of records in a sample that are unique in the

parent population, which is an important quantity when estimating the risks of re-

identification in public use datasets. The truncated latent class models offer estimates

that are very close to true values, whereas ignoring the structural zeros results in large

bias.

The remainder of the article is organized as follows. In Section 2, we formally define

Bayesian truncated latent structure models (TLSMs) for handling structural zeros. In

Section 3, we derive an MCMC sampler for estimation of Bayesian TLSMs for modest-

sized sets of structural zeros. In Section 4, we outline the computational algorithm for

reducing structural zero combinations into sets of marginal conditions, which allows us

to extend to large numbers of structural zeros. In Section 5, we present the MCMC

sampler for latent class models. In Section 6, we apply a truncated latent class model

to estimate population uniqueness in data derived from the year 2000 New York Public
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Use Microdata Sample. In Section 7, we conclude with a brief discussion of settings

other than disclosure risk estimation in which TLSMs can be applied.

2 Truncated Latent Structure Models

Let x = (x1, x2, . . . , xJ) be a discrete multivariate response variable, where each com-

ponent, xj , can take values from a finite set of Lj levels. We label these levels with

consecutive numbers from 1 to Lj . Thus, x ∈ C =
∏J
j=1{1, . . . , Lj}. Following standard

contingency tables terminology, we call each of the values of x a cell.

Latent structure models rely on the conditional independence assumption,

fLSM (x|θ) = p(x | θ) =

∫
h(z | θ)

J∏
j=1

g(xj | z, θ)dz, (1)

where z is a finite-dimensional latent variable, and θ is the vector of parameters specific

to the LSM. Here, g(xj | z, θ) denotes the probability mass function (pmf) of xj

conditional on θ and z, and h(z | θ) denotes the density (or pmf) of z given θ. For

example, Rasch models for binary data specify z = α ∈ R, θ = (β1, . . . , βJ) ∈ RJ , and

g(xj | z, θ) = Bernoulli(xj | 1/(1 + exp(α + βj))). Latent class models set z = k ∈

{1, 2, . . . ,K}, with g(xj | z, θ) = Discrete1:Lj (λjk[1], . . . , λjk[Lj ]) and
∑Lj

l=1 λjk[l] = 1.

In what follows, we use the notation p(·) to indicate the density or pmf of the argument

determined from context, except in cases of potential ambiguity.

When the data include structural zeros, we should restrict the support of x to an

appropriate subset of C. Let S ( C be the set of cells to be excluded. Let x∗ be

restricted to the set C \ S. We define the truncated latent structure model (TLSM) by

assuming

fTLSM (x∗|θ) = p(x∗ | θ,T(S)) ∝ 1{x∗ /∈ S}
∫
g(x∗ | z, θ)h(z | θ)dz, (2)
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where 1{·} equals one when the condition inside the {} is true and equals zero otherwise.

Here, we use T(S) to indicate that x∗ is distributed according to the TLSM, not

the LSM. In writing (2), we purposefully use the same θ as in (1) to facilitate a

computational strategy for incorporating structural zeros; we explain this further in

Section 3. Finally, we let g(x∗ | z, θ) =
∏J
j=1 g(x∗j | z, θ).

Let X ∗ = (x∗1,x
∗
2, . . . ,x

∗
n) be a sample of n variates generated from the TLSM. We

seek to compute the posterior distribution p(θ | X ∗,T(S)), where X ∗ = (x∗1,x
∗
2, . . . ,x

∗
n).

For many mixture models—including but not limited to LSMs—there exist efficient al-

gorithms based on data augmentation (Tanner, 1996): given a sample X , draw samples

from the joint posterior p(θ,Z | X ), where Z = (z1, . . . , zn), and obtain the desired

posterior through marginalization. Examples of these algorithms include Patz and

Junker (1999), Ishwaran and James (2001), and Erosheva et al. (2007), among others.

Unfortunately, these algorithms do not directly transfer to the truncated case in (2).

Instead of
∏n
i=1 f

LSM (x∗|θ), the joint distribution of the iid sample X ∗ is

p(X ∗ | θ,T(S)) =

n∏
i=1

fTLSM (x∗i |θ) =

n∏
i=1

∫
g(x∗i | z, θ)h(z | θ)dz∑

x/∈S

∫
g(x | z, θ)h(z | θ)dz

1{x∗i /∈ S}. (3)

Therefore, with a prior distribution p(θ), we have

p(θ | X ∗,T(S)) ∝ p(θ)

(1− π0(θ))n
n∏
i=1

1{x∗i /∈ S}
∫
g(x∗i | z, θ)h(z | θ)dz (4)

where π0(θ) = Pr(x ∈ S | θ) =
∑
x∈S

fLSM (x|θ). Because of the presence of (1− π0(θ))n

in the denominator of (4), existing methods for estimating the posterior distribution

of θ based on (1) are no longer applicable.
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3 A Sample Augmentation Strategy for TLSMs

To simulate the posterior distribution in (4) we use a sample augmentation strategy.

Heuristically, the idea is to “complete” the sample with a number of units, n0, in a way

that allows us to apply methods that ignore the truncation—specifically through ex-

ploitation of the conditional independence structure—while yielding the same posterior

distribution of parameters that we would have obtained under the truncated model.

To do this we assume that X ∗ was realized through a two-step process: generate an iid

sample of N realizations from the model in (1), and truncate the sample by throwing

away all the data points that fall in S. In doing so, we treat N as an unknown param-

eter and n, the number of retained samples, as observed data. This strategy is related

to other approaches for handling truncated data; see, for example, Gelman et al. (2004,

p. 235), Meng and Zaslavsky (2002), and O’Malley and Zaslavsky (2008).

The sample augmentation strategy actually involves two distinct models: a com-

putationally convenient LSM and the target TLSM. Because of this, it is not obvious

in general that the sample augmentation strategy offers appropriate posterior distribu-

tions for the TLSM parameters. However, as we prove in Theorem 1 below, if we set

p(N) ∝ 1/N and use the sample augmentation algorithm, the posterior distribution of

parameters conditional on the realizations that we did not “throw away” matches the

posterior distribution of the TLSM parameters conditional on the observed data.

Formally, let X = (x1,x2, . . . ,xN ) be a hypothetical complete data sample gener-

ated from the LSM process:

xi
indep∼ g(xi | zi, θ,N), where i = 1, . . . , N (5)

zi
iid∼ h(zi | θ,N),where i = 1, . . . , N (6)

θ ∼ p(θ). (7)

We view X as composed of two pieces: an “observable” part, X 1 = (x1
1, . . . ,x

1
n),
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comprising the n samples that did not fall into S and following some arbitrary sequence

(e.g., their order of appearance in X ); and an “unobservable” part, X 0 = (x0
1, . . . ,x

0
n0

),

comprising the remaining n0 = N − n observations and also following an arbitrary

sequence. Every xi in X has an associated zi. We collect all zi corresponding to cases

in X 1 in the vector Z1 = (z11, z
1
2, . . . , z

1
n), with labels matching those in X 1. We define

similarly Z0 = (z01, ..., z
0
n0

) as all zis corresponding to X 0. Note that according to this

definition the length of X 1 is a random quantity.

As the prior distribution for the unknown N , we set p(N) ∝ 1/N . Although

this p(N) is improper, using it allows us to state Theorem 1, which is proved in the

Appendix.

Theorem 1. Let X ∗ comprise n iid samples from the TLSM in (2). Let X 1 be gener-

ated from the LSM in (5) – (7) so that no element of X 1 ∈ S. Assume that X ∗ = X 1.

Let p(N) ∝ 1/N be the prior distribution of N , independent of the prior for θ, and

n0 = N − n. Then,

p(θ | X ∗,T(S)) =

∫
p(θ,Z1,Z0,X 0, n0 | X 1)dX 0dZ1dZ0dn0. (8)

Setting p(N) ∝ 1/N is necessary for the theorem to hold, as is implicit in the proof

of the theorem.

In practical terms, Theorem 1 shows that given a dataset X ∗ containing n iid

samples from the TLSM in (2), we can obtain samples from p(θ | X ∗, n,T(S)) from

a sampler for p(θ,Z1,Z0,X 0, n0 | X ∗). Since p(θ,Z1,Z0,X 0, n0 | X 1, n) involves the

LSM, this theorem allows us to exploit the conditional independence structure of the

LSM to derive an efficient Gibbs sampler.

Specifically, a Gibbs sampler for sampling p(θ,Z1,Z0,X 0, n0 | X 1, n) for an arbi-

trary exclusion set S = {s1, s2, . . . , sC} ( C can be constructed as follows.

7



1. Sample z1i for i = 1, . . . , n from its full conditional distribution,

p(z1i | . . . ) ∝ h(z1i | θ)g(x1
i | z1i , θ). (9)

2. Sample θ from its full conditional distribution,

p(θ | . . . ) ∝ p(θ)
∏

i=1...n0

g(x0
i | z0i , θ)h(z0i | θ)

∏
i=1...n

g(x1
i | z1i , θ)h(z1i | θ). (10)

3. Sample (X 0,Z0, n0) from their full joint conditional distribution based on the

factorization

p(X 0,Z0, n0 | . . . ) = p(n0 | X 1, θ)p(X 0 | n0,X 1, θ)p(Z0 | n0,X 0,X 1, θ). (11)

This factorization avoids the full conditional of n0, which includes X 0 and Z0 in

the conditioning. Since the length of Z0 and X 0 is exactly n0, we cannot sample

n0 conditional on (X 0,Z0) without making the chain reducible. This issue was

identified by Basu and Ebrahimi (2001), who used a similar factorization in the

context of multiple-recapture estimation. Additionally, all the information needed

from X 1 in (11) is its length, n. Thus we can replace all references to X 1 in (11)

by n.

To facilitate sampling from (11), we define (s1, ..., sC) to be an enumeration of

the elements of S and n = (n1, n2, . . . , nC) their respective counts, i.e., nc =

#{x ∈ X 0 : x = sc} for c = 1, 2, . . . , C. Note that
∑C

c=1 nc = n0. Factoring

p(Z0,n | . . . ) ∝ p(n | θ, n)p(Z0 | n, θ, n), the partial conditional distribution of n

(integrating out Z0) is

p(n | θ, n) ∝p(N)
(n+ n0)!

n!n1! . . . nC !
pnd

C∏
c=1

pncc , (12)

where pd = Pr(x /∈ S | θ) and pc = Pr(x = sc | θ), for c = 1, . . . , C. Replacing
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p(N) ∝ 1/N = 1/(n+ n0), we have

p(n | θ, n) =
Γ(n+ n0)

Γ(n)
C∏
c=1

nc!

pnd

C∏
c=1

pncc = NM(n | n, p1, . . . , pC). (13)

This resulting distribution is negative multinomial (NM), a multivariate gener-

alization of the negative binomial distribution. NM-distributed variates can be

obtained from compounding a multinomial distribution by a negative binomial or

from the composition of independent Poisson variates by a Gamma distribution

(Sibuya et al., 1964). Thus, we can sample from the full conditional distribution

of (n0,Z0,X 0) in three steps.

(a) Sample n ∼ NM(n, p1, . . . , pC). Make n0 =
∑C

c=1 nc.

(b) Sample the n0 elements of Z0 in C steps. On each step sample a total of nc

iid variates zci from p(zci | θ, nc) ∝ h(zci | θ)g(sc | zci, θ). Form the vector

Z0 concatenating all n0 of them.

(c) Similarly, form X 0 by concatenating the n0 elements

X 0 = (s1, . . . , s1︸ ︷︷ ︸
n1times

, . . . , sC , . . . , sC︸ ︷︷ ︸
nCtimes

). (14)

Of course, for any particular TLSM this algorithm requires being able to implement

samplers for the full conditionals of z, θ, and x. Some of these steps may not be

possible for particular TLSMs. Fortunately, they are feasible for several common latent

structure models, including IRT models (Patz and Junker, 1999), grade of membership

models (Erosheva et al., 2007), truncated Dirichlet mixtures of multinomials (Ishwaran

and James, 2001), and latent class models, the last of which we present in Section 5.

As with any truncated model, the draws of θ can be somewhat complicated to

interpret. They are at the same time mixture model parameters for a hypothetical,

augmented sample and the parameters of the TLSM (3). However, we can use the
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draws of θ to simulate readily interpretable quantities. For example, to obtain posterior

predictive distributions of cell probabilities in the contingency table, one can sample

from fTLSM according to (2). In Section 6, we use posterior predictive simulation in

assessments of disclosure risks.

Since LSMs and TLSMs are different models, the interpretation of θ in the context

of a particular LSM does not necessarily carry to its corresponding TLSM. This means

that p(θ) for TLSMs should be specified with the truncated model in mind rather than

the augmented LSM. Specifying informative prior distributions for truncated mixture

models can be a challenging task due to the complexity of the models. In our expe-

rience, using diffuse prior distributions often applied in LSMs by default allows the

likelihood to dominate the prior distribution in TLSMs.

4 Truncation Specified by Marginal Conditions

A potential limitation of the algorithm in Section 3 is the need to compute Pr(x = sc |

θ) for all sc ∈ S under the untruncated model. Even if efficient and fast algorithms for

computing these individual probabilities were available, when the size of the set S is

large—e.g., more than a few tens of thousands—this computational requirement can

render this approach prohibitively expensive.

Situations in which the set S is extremely large are frequent. For instance, in a

demographic dataset one might want to exclude all the cells that include any combi-

nation of Sex = Male and Pregnant = Y es. If the dataset comprises several other

variables, this condition alone could specify an extremely large number of cells. We

call conditions derived from fixing the levels of a subset of the response components

marginal conditions.

A convenient feature of discrete multivariate models based on conditional indepen-

dence (given latent variables) is that computing marginal probabilities is simple. Let

µ = {x : xj1 = aj1 , . . . , xjM = ajM } where j1, j2, . . . , jM is a subsequence of 1, 2, . . . , J .
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This is a set defined by a marginal condition. Then, we have

Pr(x ∈ µ | θ) =
∑

x′:x′∈µ

∫
h(z | θ)

J∏
j=1

Pr(xj = x′j | z, θ)dz (15)

=

∫
h(z | θ)

M∏
m=1

Pr(xjm = ajm | z, θ)dz. (16)

Note that while the outermost sum in (15) involves #µ terms, the expression in (16)

involves only one term.

We can adapt the data augmentation algorithm in Steps 1 – 3 to take advantage of

this property in situations where we have the exclusion set S defined as the union of a

collection of sets specified by marginal conditions. To facilitate this development, we

introduce a special notation for marginal conditions. We denote marginal conditions

through J-dimensional vectors µ = (µ1, . . . , µJ) with components taking values on the

enlarged set, µj ∈ {1, 2, . . . , Lj} ∪ {∗}. We interpret the vector µ as the marginal

conditions that define the set of cells {x ∈ C : xj = µj , if µj 6= ∗}. In a slight

abuse of notation, we use the symbol µ to represent both the marginal conditions and

the set of cells represented by those conditions. For instance, µ = (∗, ∗, 1, 2, ∗, ∗, ∗, ∗)

represents the L1 × L2 × L5 × L6 × L7 × L8 cells such that x3 = 1 and x4 = 2. Thus,

p(µ | θ) = Pr(x ∈ µ | θ) = Pr(x3 = 1, x4 = 2 | θ). We call the entries with the symbol

* placeholder components and the others fixed components. In the example, µ has six

placeholder components (1, 2, 5, 6, 7, and 8) and two fixed components (3 and 4). This

notation enables easy evaluation of the intersection of two equal-dimensional marginal

conditions, µA = (µAj ) and µB = (µBj ), as either the empty set if µAj , µ
B
j 6= ∗ and

µAj 6= µBj for some j = 1, . . . , J , or as the marginal condition µA∩B = (µA∩Bj ) where

µA∩Bj =



µBj if µAj = ∗ and µBj 6= ∗

µAj if µAj 6= ∗ and µBj = ∗

µAj if µAj = µBj .

(17)
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4.1 Case 1: Non-Overlapping Marginal Conditions

The simplest situation of exclusion sets defined by marginal conditions involves collec-

tions of non-overlapping conditions. In practice, such situations involve structural zeros

specified by the union of distinct marginal conditions involving the same variables at

different levels. For example, µ1 = (∗, 2, 1, ∗, 1) and µ2 = (∗, 3, ∗, ∗, 1) specify disjoint

sets because they differ on the second coordinate. However, as we will see Section 4.2,

the real importance of this case lies in the fact that general patterns of structural ze-

ros defined by marginal conditions always can be reduced to non-overlapping marginal

conditions.

Assume that S is defined to be the union of C ′ mutually exclusive sets defined

by marginal conditions S =
⋃C′

c′=1µc′ , with µc′1 ∩ µc′2 = ∅ for c′1 6= c′2. Here, c′ =

1, . . . , C ′ indexes marginal conditions, not individual cells as before. We adapt the

basic truncation-augmentation algorithm of Section 3 by redefining the vector n = (nc′)

where nc′ = #{x ∈ X : x ∈ µc′}, and replace steps 3.a, 3.b, and 3.c as follows.

3.a’ Sample n ∼ NM(n; p1, . . . , pC′), where pc′ = Pr(x ∈ µc′ | θ) for c′ = 1, . . . , C ′.

3.b’ For each c′ = 1, . . . , C ′, sample nc′ independent variates

p(zc′i | θ,µc′) ∝ h(zc′i | θ)
∑
x∈µc′

g(x | zc′i, θ) = h(zc′i | θ)
∏

{j:µj 6=∗}

Pr(xj = µj | zc′i, θ),

(18)

and use each of them to sample p(xc′i | zc′i,µc′ , θ) ∝ g(xc′i | zc′i, θ)1{xc′i ∈ µc′}.

Sampling from arbitrarily truncated discrete distributions when the size of the

truncated region is large or has high probability is often a major computational

challenge (e.g., Dobra, 2012). However, the special structure of both fLSM (x | θ)

and the regions defined by µ′c offer an efficient component-wise sampling strategy.

For j = 1 . . . J , sample xj ∼ p(xj | z, θ) if µj = ∗; otherwise, make xj = µj .

3.c’ Construct Z0 and X 0 by concatenating all zc′i and xc′i in the same order.

A specific instantiation of these three steps is steps 4 - 6 of the MCMC sampler for
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latent class models presented in Section 5.

4.2 Case 2: General Marginal Conditions

The situation is more complicated when we specify S through combinations of different

variables, so that the marginal conditions define overlapping regions of C. For example,

the two margin conditions (1, 2, ∗, ∗, ∗, ∗) and (1, ∗, 3, ∗, ∗, ∗) define overlapping sets, as

any cell with (x1 = 1, x2 = 2, x3 = 3) satisfies both conditions. Our approach is to find

a representation of S in terms of non-overlapping marginal conditions so that we can

apply the techniques from Section 4.1.

In principle, it is trivial to find such an equivalent representation: expand every

marginal condition into the cells it represents, and eliminate the duplicates. Unfor-

tunately, this solution can be extremely inefficient when S is large. A better solution

can be devised by noting that any single marginal condition µ that represents more

than one cell, i.e., has one or more placeholder components, can be expanded into sets

of several smaller non-overlapping marginal conditions that represent the same set of

cells but with more fixed components. To do this, we select a set of placeholder com-

ponents from the original µ and expand all combination of their levels. For each of the

expanded combinations, we create a new marginal condition that has the original fixed

levels of µ plus the expanded combination. To illustrate, let µ = (∗, ∗, 1, 2, ∗, ∗, ∗) with

L6 = 2 and L7 = 2. The expansion of µ with respect to components 6 and 7 is

Expan(µ, {6, 7}) = {(∗, ∗, 1, 2, ∗, 1, 1), (∗, ∗, 1, 2, ∗, 1, 2),

(∗, ∗, 1, 2, ∗, 2, 1), (∗, ∗, 1, 2, ∗, 2, 2)}.

It is easy to see that both µ and the union of the marginal conditions in Expan(µ, {6, 7})

represent the same set of cells.

Using this expansion operation, we develop an algorithm to transform a set of

marginal conditions into a set of disjoint marginal conditions that represent the same
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set of cells. For any pair of marginal conditions, we identify and remove the region

in which the two conditions overlap by expanding the placeholder components from

the second that are fixed components in the first. Consider, for example, the two

overlapping conditions µ1 = (1, 1, ∗, ∗) and µ2 = (1, ∗, 2, ∗) with L2 = 2. Expanding µ2

with respect to its second component (which is a placeholder in µ2 but fixed in µ1), we

see that µ2 is equivalent to the union of (1, 1, 2, ∗) and (1, 2, 2, ∗). Since (1, 2, 2, ∗) ∈ µ1,

we remove it from consideration, yielding the equivalent representation of µ1 ∪ µ2 as

the disjoint union (1, 1, ∗, ∗) ∪ (1, 1, 2, ∗).

Generalizing to an arbitrary list of margin conditions, Su, the following algorithm

transforms Su into a collection of disjoint marginal conditions, Sd, that represent the

same collection of cells.

1. LET Pending be a list containing all the marginal conditions in Su sorted in

decreasing order according to the number of cells they represent. Pending[1] is

the marginal condition that represents the largest number of cells.

2. INITIALIZE Sd ← {Pending[1]}. REMOVE Pending[1] from Pending.

3. WHILE Pending is not empty DO:

• LET µ← Pending[1]. Remove µ from Pending.

• LET ComparList← {all elements of Pending that are not disjoint with µ}.

• LET Cols ← {Indexes of all fixed components of elements of ComparList

that are placeholder components on µ}.

• IF (ComparList or Cols are empty) THEN

– LET Sd ← Sd ∪ {µ}

• ELSE

– LET Sd ← Sd ∪ {all elements of Expan(µ, Cols) that are disjoint

with every element of ComparList}.

We then can insert the resulting set of disjoint marginal conditions into the sampler
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in Section 4.1 to obtain samples from the posterior distribution of θ. The algorithm

always reduces the number of conditions compared to the implied total number of

structural-zero cells, thus always improving computational running times.

This algorithm is a pre-processing step that takes place only once, before running

the MCMC sampler. Thus, in the context of sampling from the posterior distribution

of θ, its execution generally does not significantly impact computing costs. We note,

however, that execution of the MCMC sampler can be computationally expensive when

the resulting number of marginal conditions is large (e.g., more than 100,000 with

typical current computing power).

5 Bayesian Latent Class Model with Structural

Zeros

To illustrate these methods, in this section we develop an MCMC algorithm for ob-

taining samples from the posterior distribution of parameters from a specific TLSM,

the finite mixture of product-multinomial distributions. This is expressed as

p(x | λ,π) =
K∑
k=1

πk

J∏
j=1

λjk[xj ], (19)

where λ = (λjk[l]), with all λjk[l] > 0 and
∑Lj

l=1 λjk[l] = 1. Here, π = (π1, . . . , πK)

with
∑K

k=1 πk = 1. This is known as a latent class model (Goodman, 1974; Lazarsfeld

and Henry, 1968). These models are often used to discover and characterize latent sub-

populations based on observable discrete multivariate characteristics x (Clogg, 1995).

They also can be used as a general-purpose contingency table smoothing tool, as well

as engines for imputation of missing data (Vermunt et al., 2008; Gebregziabher and

DeSantis, 2010; Si and Reiter, 2013). We only consider models for fixed K, as letting

K → ∞ as in Dunson and Xing (2009) results in break-downs of the algorithm in
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Section 3. In particular, the infinite-dimensional structure of the mixture prevents us

from directly sampling Z in steps 1 and 3.b of the algorithm.

We use the following prior distributions.

λjk[·]
indep∼ Dirichlet(1Lj ) (20)

π ∼SBK(α) (21)

α ∼Gamma(a, b). (22)

Here, SBK(α) is a K-dimensional finite stick breaking process (Sethuraman, 1994;

Ishwaran and James, 2001). Let VK = 1 and Vk ∼ Beta(1, α) for k = 1, ...,K − 1. We

say that π ∼ SBK(α) if πk = Vk
∏
h<k(1 − Vk). This prior distribution on π induces

sparsity, thereby reducing computation and avoiding over-fitting for large K. As α

decreases, the probability that all zis take values from a proper subset of {1, . . . ,K}

increases. Thus, effectively the prior distribution for α selects reasonable values of K,

while simultaneously accounting for the uncertainty associated with it. This Bayesian

version of the LCM, without structural zeros, is essentially a truncated version of the

infinite mixture of product-multinomial distributions developed by Dunson and Xing

(2009).

Let X 1 = (x1
1, . . . ,x

1
n) be a sample from the truncated latent class model,

p(x1
i | λ,π,T(S)) ∝ 1{x1

i /∈ S}
K∑
k=1

πk

J∏
j=1

λjk[xj ], (23)

where S ( C is the set of cells to exclude from the support of the distribution. Let

Sd = {µ1, . . . ,µC′} be the collection of disjoint marginal conditions such that S =

∪C′
c′=1µc′ , obtained by applying the algorithm in Section 4.2. Applying Section 4.1, we

obtain samples from the posterior distribution of (λ,π, α) under model (23) as follows.

1. For i = 1, . . . , n, sample z1i ∼ Discrete1:K(p1, . . . , pk), with pk ∝ πk
∏J
j=1 λjk[x

1
ij ].

2. For j = 1, . . . , J and k = 1, . . . ,K, sample λjk[·] ∼ Dirichlet
(
ξjk1, . . . , ξjkLj

)
, with
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ξjkl = 1 +
∑n

i=1 1{x1ij = l, z1i = k}+
∑n0

i=1 1{x0ij = l, z0i = k}.

3. For k = 1...K−1 sample VK ∼ Beta(1+νk, α+
∑K

h=k+1 νk), for νk =
∑n

i=1 1{z1i =

k} +
∑n0

i=1 1{z0i = k}. Let VK = 1 and make πk = Vk
∏
h<k(1 − Vk) for all

k = 1, ...,K.

4. For c′ = 1, . . . , C ′, compute ωc′ = Pr(x ∈ µc′ |λ, π) =
∑K

k=1 πk
∏
µc′j 6=∗

λjk[µc′j ].

5. Sample (n1, . . . , nC′) ∼ NM(n, ω1, . . . , ωC′), and let n0 =
∑C

c′=1 nc′ .

6. Let κ← 1. Repeat the following for each c′ = 1, . . . , C ′.

(a) Compute the normalized vector (p1, . . . , pK), where pk ∝ πk
∏

j:µc′j 6=∗
λjk[µc′j ].

(b) Repeat the following three steps nc′ times:

i. Sample z0κ ∼ Discrete(p1, . . . , pk),

ii. For j = 1, . . . , J sample

x0κj ∼


Discrete1:Lj (λjz0κ [1], . . . , λjz0κ [Lj ]) if µc′j = ∗

δµc′j if µc′j 6= ∗

where δµc′j is a point mass distribution at µc′j ,

iii. Let κ← κ+ 1.

7. Sample α ∼ Gamma (a− 1 +K, b− log πK).

As discussed in Section 3, this MCMC algorithm produces joint samples from the pos-

terior distribution p(λ,π, α,Z1,Z0,X 0, n0 | X 1) under the complete data model, from

which we can obtain samples from p(λ,π, α | X 1, S) after marginalizing (Z1,Z0,X 0, n0).

6 Application: Estimating Disclosure Risks

When sharing data with the public, statistical agencies are ethically and often legally

obligated to protect the confidentiality of data subjects’ identities. Removing direct
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identifiers like names and addresses may not suffice to protect confidentiality. For ex-

ample, ill-intentioned users may be able to link records in the released data to other

databases (that include direct identifiers) by matching on variables common to the two

databases. Agencies are particularly concerned about individuals with combinations

of publicly available variables, called keys, that appear only once in the sample. When

such combinations also are unique in the population, attackers who find matches for

these keys are guaranteed to make re-identifications (assuming no errors in the match-

ing process or data sources).

Therefore, as part of their disclosure risk assessments, most statistical agencies seek

to measure the number of records with keys that are unique in the sample that are

also unique on those keys in the population; see, for example, Skinner and Shlomo

(2008), Manrique-Vallier and Reiter (2012), and the references therein. Typically, the

keys include multiple discrete variables such as race, sex, marital status, age (integer

or interval-reported), tenure (own home or not), and number of people in household.

In demographic data, keys typically contain many structural zeros. These often result

from impossible pairwise combinations; for example, in the U.S., datasets should not

contain individuals under age 15 years who are married.

In practical contexts, the number of population uniques in a sample is not known

by the agency, since it does not observe the entire population. Hence, the agency must

estimate this number from the sample. Typical estimation approaches are based on cell

probabilities in the table of keys, estimated with log-linear models (Skinner and Shlomo,

2008). However, log-linear models can yield biased estimates of cell probabilities for

sparse contingency tables with many (random) zero counts. This bias can result in

unreliable estimates of probabilities of uniqueness and, hence, misrepresentations of

disclosure risks. These shortcomings were illustrated by Manrique-Vallier and Reiter

(2012), who proposed instead to estimate the cell probabilities using Bayesian grade

of membership models. These models offer the potential for improved accuracy over

state-of-the-art log-linear models; however, Manrique-Vallier and Reiter (2012) do not
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handle structural zeros, and their estimation routines are computationally expensive.

We propose to use the truncated latent class model from Section 5 to estimate

the number of population uniques in a sample on a set of discrete keys with structural

zeros. In addition to handling the structural zeros, estimation with this TLSM is orders

of magnitude faster than estimation with the Bayesian grade of membership model.

To our knowledge, this represents the first time a Bayesian truncated latent structure

model has been applied for this disclosure risk estimation context.

6.1 General Framework

We use a framework similar to that of Manrique-Vallier and Reiter (2012), who use

methods from Bayesian finite population inference to estimate the number of popu-

lation uniques. Suppose that an agency observes a simple random sample, X , of n

records collected from a finite population of size H. Let Fx be the number of times

that pattern x appears in the population, and let fx be the corresponding quantity for

the sample. Hence,
∑

x∈C fx = n and
∑

x∈C Fx = H. The agency seeks to estimate the

number of elements that are unique in both the sample and the population,

τ = τ(F, f) =
∑
x∈C

1{fx = 1,Fx = 1}. (24)

We assume that the (unobserved) population is an iid sample of H elements gener-

ated from a super-population model defined by the truncated latent class model in (23).

Thus, given observed data X ∗ and the set of structural zeros S, we seek to estimate

the posterior distribution of τ ,

p(τ | X ∗,T(S)) =

∫
p(τ(F, f) | X ∗, θ,T(S))p(θ | X ∗,T(S))d(F, θ). (25)

This expression involves integration over the parameter space and over all possible

populations of size H, which is analytically intractable. However, given a sample
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from the posterior distribution of parameters, θ(m), we can obtain a sample from the

posterior distribution of τ , τ (m), as follows.

1. Let U be the number of sample uniques, i.e., cells for which fx = 1, and let

(x1, . . . ,xU ) be the vector containing the cells corresponding to the sample uniques,

labelled according to some arbitrary order. Compute (p1, . . . , pU ), where pi ∝

Pr(x = xi | θ(m),T(S)), for i = 1, . . . , U .

2. Sample (H1, . . . ,HU ) ∼ Multinomial(H − n, p1, . . . , pU )

3. Let τ (m) =
∑U

i=1 1{Hi = 0}

This algorithm generates synthetic population counts for all the cells corresponding to

sample uniques and as a byproduct offers the number of population uniques. In step 3,

we count the number of empty cells instead of cells with only one element because we

generate the variate τ (m) conditional on the sample, which already includes one element

in each of those cells. As noted by an associate editor, the algorithm also offers an

estimate of p(τ = 0 | X ∗,T(S)), i.e., no sample uniques are population uniques. This

could be computed as the average of p(H1 > 0, . . . ,HU > 0 | θ(m),T(S)) over the

simulated values of θ(m), where each probability can be determined directly from the

multinomial distribution.

6.2 Description of Data

We use data from the 5% public use microdata sample (PUMS) of the 2000 U. S.

census for the state of New York (Ruggles et al., 2010). We treat all H = 953, 076

individuals from the sample as a population from which we take a random sample

of n = 5, 000 individuals. We select ten categorical variables as keys: ownership

of dwelling (OWNERSHP: 3 levels), mortgage status (MORTGAGE: 4 levels), age

(AGE: 9 levels), sex (SEX: 2 levels), marital status (MARST: 6 levels), single race

identification (RACESING: 5 levels), educational attainment (EDUC: 11 levels), em-

ployment status (EMPSTAT: 4 levels), work disability status (DISABWRK: 3 levels),
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and veteran status (VETSTAT: 3 levels). For all variables except AGE, we use the

original coding in the PUMS. These collection of variables define a contingency table

with 2,566,080 cells.

We categorize AGE into 9 groups: 0–14, 15, 16, 17, 18–24, 25–35, 36–50, 51–70,

and 71+. We included distinct categories for ages 15, 16, and 17 to describe combina-

tions of levels that are excluded by design and have to be treated as structural zeros.

For example, EMPSATAT is defined only for people 16 or older, whereas MARST is

defined only for people 15 or older. Parsing all the impossible combinations of levels,

driven by the pairwise combinations OWNERSHP-MORTGAGE and AGE-(MARST,

EMPSTAT, EDUC, DISABWRK and VETSTAT), we end up with 60 overlapping

marginal conditions that represent 2,317,030 cells—essentially the entire table. After

applying the algorithm in Section 4.2 to find an equivalent representation of this set, we

dramatically reduce to 567 disjoint marginal conditions. We note that the algorithm

ran in a fraction of second using a standard desktop computer.

6.3 Results

We take 100 independent samples with n = 5000, each time estimating the posterior

distribution of τ based on the method in Section 6.1. To illustrate the effect of ignoring

the structural zeros on the estimates, we also fit the regularized latent class model

from (19) without the correction for truncation to the same set of 100 samples. For

all cases, we use uniform prior distributions for all λjk[·]. Following the advice from

Dunson and Xing (2009) we use distribution α ∼ Gamma(0.25, 0.25) in shape/inverse

scale parametrization as a default non-informative prior.

In all cases, we set the maximum number of mixture components to K = 50. The

sparsity-inducing prior specification of π results in an effective number of components,

i.e., those comprising at least one individual, typically around 22. This is evident in

Figure 1, which displays the posterior distribution of the effective number of com-
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Figure 1: Posterior distribution of the effective number of components for a truncated reg-
ularized latent class model with K = 50, fitted to a sample of n = 5, 000 from the NY
data.

ponents for one of the samples. Further experimentation shows that the posterior

distribution of the effective number of components is relatively insensitive to other

vague prior specification of α and larger values of K. See Si and Reiter (2013) for

further discussion of choosing K.

Figure 2 shows posterior 95% equal tail credible intervals and posterior medians

of τ given each sample, re-centered at the true values of τ as computed from the

population and each sample. We note that there is no single value of τ , since it

is a function of both the population and each sample. When using the truncation,

most of the posterior distributions of τ are appropriately centered near zero, so that

each τ is closely estimated across the 100 replications. The average of τ over the 100

trials is 56.8 (sd = 7.43), and the average of the 100 posterior estimates (the posterior

medians) of the corresponding τs is 57.1 (sd = 4.89). In contrast, when we ignore the

effect of the truncation, the resulting estimates of the τs over-estimate the disclosure
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Figure 2: Posterior estimates of τ , re-centered at the true value of τ , for 100 random samples
with n = 5, 000 from the NY census data using regularized Bayesian latent class models with
(left) and without (right) correction for truncation. Each bar marks the 0.025, 0.5 and 0.975
quantiles.
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risk measure substantially, with a mean over the 100 trials of 70.9 (sd = 6.28). As a

result, agencies basing risk calculations on the untruncated model could apply more

disclosure treatment to the data, e.g., aggregation or data swapping (Reiter, 2012),

than needed, thereby unnecessarily reducing the quality of the release data.

Although the results obviously are specific to the New York PUMS data, the trun-

cated latent class model offers remarkably accurate estimates of τ . Given its flexibility,

scalability, and computationally efficiency—for each sample the MCMC takes only a

few minutes of running time on a standard desktop computer—these results suggest

that statistical agencies could benefit from using the truncated latent class model in

disclosure risk assessments.

7 Concluding Remarks

We conclude with a brief discussion of applications of TLSMs beyond estimating prob-

abilities of uniqueness for disclosure risks. Basically, these models could apply to any

setting involving truncated contingency tables. For example, TLSMs could be highly

useful as engines for multiple imputation of missing values (Rubin, 1987) in surveys

comprising many categorical items with extensive skip patterns, which represent struc-

tural zeros. Typical approaches to multiple imputation of categorical data based on

log-linear models or chained equations (Raghunathan et al., 2001) can be impractical

and unreliable, as it can be difficult to identify and accurately estimate important high-

order interactions with these models. In contrast, a TLSM could capture complicated

structure automatically while respecting structural zeros. Related, statistical agen-

cies could use the posterior predictive distributions resulting from TLSMs to simulate

realistic replicates of sampled or population-level categorical data, and release those

replicates as public use files. This idea has been used for numerical data under the

name synthetic data (Reiter and Raghunathan, 2007). TLSMs are directly applicable

when certain combinations have been wholly removed from the sample, for example
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by statistical agencies seeking to reduce disclosure risks or by data analysts seeking to

exclude certain subgroups from contingency table analyses. Equivalently, TLSMs are

useful when certain combinations have been effectively eliminated from the sample by

design. A special case of this setup are Bayesian formulations of multiple-recapture

population size estimation using latent variables (see e.g. Fienberg et al., 1999; Basu

and Ebrahimi, 2001; Manrique-Vallier and Fienberg, 2008), in which the objective is

to estimate the size of the unobserved portion of a population given joint observation

patterns in multiple partial lists. Here, the TLSM offers estimates of the size of the

population (n+ n0).
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A Proof of Theorem 1

Following the generative model from Section 3, the joint distribution of (X 0,X 1,Z0,Z1)

conditional on N and θ is

p(X 0,X 1,Z0,Z1|θ,N) =(
N

n

)
1{N ≥ n}

n∏
i=1

g(x1
i | z1i )h(z1i |θ)1{x1

i /∈ S} ×
N−n∏
i=1

g(x0
i | z0i )h(z0i |θ)1{x0

i ∈ S}

where n is the length of X 1. Assuming p(N) ∝ 1/N independent of p(θ) and replacing

n0 = N − n ≥ 0, we have

p(θ,Z0,Z1,X 0, N | X 1)

∝ p(X 0,X 1,Z0,Z1|θ,N)p(θ)p(N)

∝ p(θ)
(
N − 1

n− 1

)
1{N ≥ n}

n∏
i=1

g(x1
i | z1i )h(z1i |θ)1{x1

i /∈ S} ×
n0∏
i=1

g(x0
i | z0i )h(z0i |θ)1{x0

i ∈ S}.

Therefore, we have

∫
p(θ,Z1,Z0,X 0, n0 | X 1)dX 0dZ1dZ0dn0

∝p(θ)
n∏
i=1

∫
g(x1

i | z, θ)1{x1
i /∈ S}h(z | θ)dz

×
∞∑

n0=0

(
n0 + n− 1

n− 1

) n0∏
i=1

∑
x∈C

∫
g(x | z, θ)h(z | θ)1{x ∈ S}dz

=p(θ)

n∏
i=1

1{x1
i /∈ S}

∫
g(x1

i | zθ)h(z | θ)dz×
∞∑

n0=0

(
n0 + n− 1

n− 1

)[∑
x∈S

fTSM (x|θ)

]n0

=p(θ)

n∏
i=1

1{x1
i /∈ S}

∫
g(x1

i | z, θ)h(z | θ)dz× (1− π0(θ))−n

=
p(θ)

(1− π0(θ))n
n∏
i=1

1{x1
i /∈ S}

∫
g(x1

i | z, θ)h(z | θ)dz

=p(θ | X 1,T(S)) = p(θ | X ∗,T(S)),
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completing the proof.
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