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Abstract

The chapter introduces the structuring of categorical data in the form of contin-
gency tables, and then turns to a brief introduction to log-linear models and methods
for their analysis, followed by their application in the context of Customer Satisfaction
Surveys (CSS). The focus is on the adaption of methods designed primarily for nominal
data to the type of ordinal data gathered in the ABC Annual Customer Satisfaction
Survey (ACSS). The chapter outlines some basic methodology based on maximum
likelihood methods and related model search strategies, and then puts these method-
ological tools to work in the context of data extracted from ACSS.

Keywords and Phrases: Contingency tables, Likelihood equations, Maximum
likelihood methods, Model search, Nominal data, Ordinal data.

1 Introduction

Categorical data are ubiquitous is virtually all branches of science, but especially in the so-
cial sciences and in marketing. A contingency table consists of counts of units of observation
cross-classified according to the values of several categorical (nominal or ordinal) variables.
Thus standard survey data, which are largely categorical in nature, are best thought of as
forming a very large contingency table. If we have collected data from n individuals or
respondents and there are p questions in the survey questionnaire, then the table is of di-
mension p and the counts total n.

Suppose there are p = 16 questions with binary response categories on a questionnaire.
Then the corresponding contingency table would contain 216 = 65, 536 cells. With a sample
of n = 1, 000 respondents, a value not atypical for a large customer satisfaction survey, we
can expect to see few large counts since the average cell count would be 0.01! Thus methods
for the analysis of categorical survey data need to be able to cope with such sparseness,
especially since there is likely to be closer to 100 questions on the survey questionnaire,
rather than 16. One strategy for coping involves latent variable structures with relatively
few parameters, such at the Rasch model and its generalizations (see chapter 14, as well
as some alternatives described briefly at the end of this chapter). Another strategy is to
take small groups of variables and look more closely at their interrelationships. That is the
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strategy on which we focus here using log-linear models.

Hierarchical log-linear models provide an important and powerful approach to examin-
ing the dependence structure among categorical random variables. There are now many
books describing these methods and computer programs in standard packages such as R
and SAS for implementing them. See for example, the books by Agresti (2002, 2007, 2010),
Christiensen (1997), Bishop, Fienberg & Holland (1975), Fienberg (1980), Goodman (1978),
and Haberman (1974).

In the next section, we describe log-linear models and their interpretation and describe
some basic methodology that allows for the analysis of survey data. Then we put the models
and tools to work on an excerpt of the ABC Annual Customer Satisfaction Survey (ACSS)
to illustrate their use and interpretation. We describe some related latent class models in a
final section and explain their potential uses.

2 Overview of Log-linear Models and Methods

2.1 Two-Way Tables

Virtually all readers will be familiar with the usual chi-squared test for the independence
of the row and column variables in a two-way contingency table first proposed by Pearson
(1900) and which appears in most introductory statistics textbooks:

X2 =
∑
ij

(Observed(i, j)− Expected(i, j))2

Expected(i, j)
, (1)

Suppose that the row variable is gender, male or female, and the column variable is product
approval, yes or no. Then the X2 test focuses on whether approval is independent of gender,
where

Expected Count(i, j) =
(Row Total i)× (Column Total j)

Grand Total
, (2)

is the expected value of the (i, j) cell. We usually refer the value of X2 to the tabulated
upper-tail values of the chi-squared (χ2) distribution on 1 degree of freedom and compute a
p-value, e.g., a value of X2 of 3.64 corresponds to a p-value of 5%.

Log-linear models can help extend analyses such as this, e.g., see Bishop, Fienberg &
Holland (1975) and Fienberg (1980). If we let xij be the count in the (i, j) cell of the table,
indexed by i for Gender and j for Product Approval, we display the 2×2 tables of cell counts
and probabilities pij = P [Gender= i,Approval= j] as
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Approval
Yes No Totals

Gender Male x11 x12 x1+
Female x21 x22 x2+
Totals x+1 x+2 n

Approval
Yes No Totals

Gender Male p11 p12 p1+
Female p21 p22 p2+
Totals p+1 p+2 1

The same notation works for more categories, i.e., for an I × J table. We can now write
the log-linear model for the expected cell values, {mij = E[xij]}, in such tables as

logmij = log(npij) = u+ u1(i) + u2(j) + u12(ij) (3)

where and n =
∑

i

∑
j xij, with constraints such as

2∑
i=1

u1(i) =
4∑

j=1

u2(j)

2∑
i=1

u12(ij) =
4∑

j=1

u12(ij) = 0, (4)

The version of the model in equation (3) has has the form of an analysis of variance model.
When u12(ij) = 0 for all i and j, we can rewrite equation (3) as mij = mi+m+j/n and the
maximum likelihood estimate of mij is simply the result of setting mi+ = xi+ and m+j = x+j.
In this notation, the X2 statistic of expression ( 1),

X2 =
∑
ij

(xij − xi+x+j/n)2

xi+x+j/n
, (5)

is equivalent to testing whether the interaction terms u12(ij) are all zero in the log-linear
model. Alternatively, would could use the likelihood ratio statistic comparing the log-additive
model (u12(ij) = 0)

G2 = 2
∑
i,j

xi,j log

[
xi,j

xi+x+j/n

]
, (6)

due originally to Wilks (1935). The X2 and G2 statistics are usually close in value, differing
mainly in the presence of small cell counts. Cressie and Read (1988) provide a detailed
account of a class of goodness-of-fit measures that include both the X2 and G2 statistics as
special cases and have the same asymptotic χ2 distribution under the null hypothesis that
the model of independence holds.

For a 2×2 table, a common measure of dependence between the row and column variables
is the odds ratio introduced by Yule (1900):

OR =
odds (X2 = 2|X1 = 2)

odds (X2 = 2|X1 = 1)
=
P [X2 = 2|X1 = 2]/(1− P [X2 = 2|X1 = 2])

P [X2 = 2|X1 = 1]/(1− P [X2 = 2|X1 = 1])
=
p11p22
p12p21

.

We can estimate OR by

ÔR =
x11x22
x12x21

. (7)
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From (3) and (4), it is easy to show that

u12(11) =
1

4
log(OR). (8)

Hence we can use the log-linear model in equation (3) to estimate the odds ratio. When
OR > 1 (u12(11) > 0), the variables in the table are positively associated; when OR < 1
(u12(11) < 0) they are negatively associated. OR = 1 (u12(11) = 0) corresponds to statistical
independence.

Because for the 2×2 table there is only a single parameter associated with independence,
i.e., either u12(11) or OR, we say that there is 1 degree of freedom (d.f.) associated with this
model. Under the model of independence, both the X2 and G2 statistics have an asymptotic
χ2 distribution on 1 d.f. For the more general I×J contingency table, there are (I−1)(J−1)
such odds ratios of the form (7), and the test statistics have an asymptotic distribution that
follows the χ2 distribution on (I − 1)(J − 1) d.f. under independence.

2.2 Hierarchical Log-Linear Models

All the ideas and notation in the preceding subsection carry over into the representation and
analysis of higher-dimensional tables. Now we add doubly subscripted u−terms to capture
higher-order interactions among sets of variables. Thus for a 3-way I×J×K table, we write
the general log-linear model as

logmijk = logE[xijk] = u+ u1(i) + u2(j) + u3(k) (9)

+u12(ij) + u13(ik) + u23(jk) + u123(ijk),

with side-constraints that all doubly-subscripted uterms add to zero across any index.
The model where we set all 3-factor terms u123(ijk) equal to zero is the “no-second-order
interaction model” studied first by Bartlett (1935) and later by Birch (1963) and Goodman
(1969).

Many authors use a form of shorthand notation to specify interpretable log-linear models.
Here we use the notation [1][2] to refer to the additive model u+u1(i)+u2(j), and the notation
[12] to refer to the model with u12(jk) and all lower-oder terms: u + u1(i) + u2(j) + u12(ij),
exactly as we wrote in equation 3). We say that these models are hierarchical because the
inclusion of interaction terms like [12] implies inclusion of all lower-order terms, i.e., [1] and
[2]; this is known as the hierarchy principle. In general the quantities in square brackets in
this notation then refer to the highest order u−terms in the model.

Thus for the no-second-order interaction model for the 3-way I×J×K table we describe
the model as [12][13][23]. The 3 components, or highest order u-terms correspond to the two-
way marginal totals, ({mij+}, {mi+k}, {mij+}), and the estimated expected are the solutions
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of the equations that set these equal to their expectations, i.e.,

mij+ = xij+, for i = 1, 2, . . . , I; j = 1, 2, . . . , J,

mi+k = xi+k, for i = 1, 2, . . . , I; k = 1, 2, . . . , K,

mij+ = xij+, for j = 1, 2, . . . , J ; k = 1, 2, . . . , K.

We solve these equations to get maximum likelihood estimates, {m̂ijk}, using some form
of iterative method such as iterative proportional fitting (see Bishop, Fienberg & Holland,
1975), or compute them using a generalized linear model program.

All of these ideas and notation generalize to 4-way and higher-dimensional tables. For
example, for a 4-way table, the model [134][234] includes the two three-way interaction terms
u134(ikl) and u234(jkl), as well as all two-way interactions except for u12(ij) and all “main”
effects, i.e.,

logmijkl = logE[xijkl] = u+ u1(i) + u2(j) + u3(k) + u4(l)

+u13(ik) + u14(il) + u34(kl) + u23(jk) + u24(jl)

+u134(ikl) + u234(jkl).

If we hold variables 3 and 4 at fixed levels k0 and l0 in this model, most terms in the model
are constant and the only terms that vary with variables 1 and 2 are additive, i.e.,

logmijk0l0 = logE[xijk0l0 ] = {u+ u3(k0) + u4(l0) + u34(k0l0)}
+{u1(i) + u13(ik0) + u14(il0) + u134(ik0l0)}
+{u2(j) + u23(jk0) + u24(jl0) + u234(jk0l0)}.

This representation thus implies that variables 1 and 2 are conditionally independent given
variables 3 and 4. Models where we set exactly one first order interaction term equal to zero,
are often referred to as partial association models.

The computation of the degrees of freedom of general hierarchical log-linear models is
analogous to the case of the I×J table, although more involved as we consider more complex
models. Fortunately, most standard computer programs implementing log-linear methods,
provide the degrees of freedom of the model as part as their standard output, so we seldom
have to compute them directly. When tables are sparse, however, we may need to adjust
them “by hand,” as we see below.

We often represent conditional independence models graphically, as we do here in Fig-
ures 1 and 2, where each node is a variable in the model, and absence of edges represents
conditional independence according to the graphical Markov property: If A, B and C are
(possibly empty) subsets of nodes (variables), we say A and B are conditionally independent
given C, if and only if deleting the nodes in C from the graph (and any edges incident to
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them) results in disjoint subgraphs, one containing the nodes in A and another the nodes
in B. A hierarchical log-linear model whose conditional independence relations are precisely
those that we can read off its graph in this way is known as a graphical model. For fur-
ther details see Whitaker (1990) and Edwards (2000). Lauritzen (1996) provides a detailed
theoretical presentation on graphical models more generally.

2.3 Model Search and Selection

We use hierarchical log-linear models to assess dependence among three or more variables in
a contingency table. Special cases of these models, the log-linear graphical and decomposable
models allow us to search large contingency tables efficiently for independence, conditional
independence, and dependence relationships that are suggestive about the causal structure
of the underlying data generating process (Edwards, 2000).

Extending the ideas from the two-way table case, we define the general G2 statistic or
deviance for a general hierarchical loglinear model, (a), as

G2(a) = −2
∑
i

xi log

[
m̂

(a)
i

xi

]
, (10)

where m̂
(a)
i is the MLE of the expected value of the i-th cell, computed under model (a).

The G2 statistic is asymptotically χ2 distributed, with the appropriate degrees of freedom
for model (a) and can be used to test the goodness of fit of model (a).

We say that two hierarchical log linear models, (1) and (2), are nested when model (2) is
a special case of model (1), obtained by setting some of the u-terms of (1) to zero, respecting
the hierarchy principle—e.g. [1][2][3] is nested within [13][23], which is in turn nested within
[12][23][13]. When this is the case, we can compute the G2 of model (2), conditional on
model (1) being correct, as

∆G2 = G2(2|1) = −2
∑
i

m̂
(1)
i log

[
m̂

(2)
i

m̂
(1)
i

]
= G2(2)−G2(1), (11)

which we can use to formally test the difference between models (1) and (2). If models
(1) and (2) have respectively ν1 and ν2 degrees of freedom, then G2(2|1) is asymptotically
distributed as χ2 with ν2 − ν1 degrees of freedom. Although conditional tests based on G2

statistics are a powerful tool when comparing competing models, we should always keep in
mind that the theoretical results are only valid for nested models, thus they cannot guide
us when comparing models that do not belong to the same hierarchy—e.g. [1][23] and [2][13].

As a general principle, more complex models will always fit the data better than simpler
models (less bias), but at the price of less precise estimates (more variance), while simpler
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models allow for more precise estimates at the price of higher bias. A popular technique to
balance fit and parsimony is to penalize the G2 with some measure that expresses complexity.
The Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC),
defined as

AIC = G2 − 2 · df. (12)

BIC = G2 − log(N) · df, (13)

where N is the sample size of the contingency table and df the degrees of freedom implied
by the model, are two common choices and can be used to compare non nested models. The
AIC criterion tends to favor more complex models than BIC.

2.4 Sparseness in Contingency Tables and Its Implications

As we consider larger number of variables, the number of elementary cells in the correspond-
ing contingency tables increases exponentially and with it, the probability of having cells
with zero counts. One powerful feature of log-linear models is that parsimonious models
can yield positive expected values for elementary cells, even if the observed counts are zero.
However, if some of those observed zeros result in a pattern that produces a zero in a margin
corresponding to a minimal configuration required by a model, the corresponding parameter
cannot be estimated. For example, if x+01 = 0, then u23(01) cannot be estimated from the
data.

We can still use log-linear models to in these cases, provided that we take the precaution
of excluding the problematic zero elementary cells from analysis, by setting their expected
values to zero a priori, or equivalently, conditioning on the fact that the marginal counts are
zero and thus that the cell values that add to them must be zero as well. Corresponding
to these zero cells tvalues are non-estimable parameters in the log-linear model and these
essentially are excluded from the model or set equal to zero. The resulting test statistics,
X2 and G2, will still be asymptotically as a χ2 random quantity, but we must adjust the
degrees of freedom to account for the loss of data and parameters, using the formula

df ′ = df − ze + zp, (14)

where df are the degrees of freedom implied by the original model, ze the number of cells with
zero estimates and zp the number of parameters that cannot be estimated (see Bishop, Fien-
berg & Holland (1975) and Fienberg (1980) for details). Most of the times the adjustment
will have to be done by hand, as most computer programs do not yet do this automatically.

Unfortunately, depending on the model, there exist patterns of zeros that do not result
in marginal tables with zero entries but also lead to the non existence of the MLEs. For
example in a 2× 2× 2 table with zeros in the (1,1,1) and (2,2,2) cells, i.e.,
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0
0

under the no-2nd-order interaction model [12][13][23], the two cells with zero entries are
constrained to be zero. The problem associated with zeros depends only on the location of
the zeros, and not on the magnitude of the non-zero cells. There are many more complex
examples of these kinds of ‘zero cell” problems but no trivial characterization exists. Tools
from algebraic geometry do, however, provide a vehicle for understanding and dealing with
the problem, e.g., see Rinaldo, (2005), Ericksen et al. (2006), and Dobra et al. (2008).

2.5 Computer Programs for Log-linear Model Analysis

Most standard statistical packages have one or more programs or sets of routines that are
useful for implementing the methodology described above. In particular SAS, STATA, and
R both have generalized linear model routines, and R also has multiple versions of iterative
proportional fitting and separate programs for assessing goodness-of-fit.

MIM is a software system for graphical modeling written for the windows operating sys-
tem, available from http://www.hypergraph.dk/, and it is compatible with graphical search
methods described in Edwards (2000). MIM is usefully for generating the graphs that go
with the models it fits. A version of MIM is also available in a special R library, but again
it runs only under the Windows operating system.

As we noted in the previous subsection, none of the existing log-linear model or gen-
eralized linear model programs deals especially well with the problems of sparsity, i.e., the
identification of problematic zero cells and the attendant corrections required for computing
degrees of freedom. Fienberg and Rinaldo (2007) give further details of what happens in
such circumstances.

3 Application to ABC Company Survey Data

To illustrate the log-linear methodology summarized in the preceding section, we turn to the
second section of the ABC 2010 Customer Satisfaction Survey. This section asks customers
their evaluation (1 to 5) about a series of characteristics related to their level of satisfaction
with the equipment provided by the company (Table 1). The data form a 55 contingency
table, with a total of 3,125 cells but with only n=220 observations—a sparse table.

In order to reduce the sparsity of the resulting table we recoded the answers as binary
variables by grouping the first three levels (1 to 3) and the last two (2,3) into single cate-
gories. Table 2 shows the resulting 5-way contingency table. Most of the alternative choices
for collapsing categories did not adequately address the sparsity issue.
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Label Description
A The equipment’s features and capabilities meet your

needs
B Improvements and upgrades provide value
C Output quality meets or exceeds expectations
D Uptime is acceptable
E Overall satisfaction with the equipment

Table 1: Variables in section Equipment

B No Yes

C No Yes No Yes

D No Yes No Yes No Yes No Yes

E A

Low No 27 10 6 2 4 8 1 3

Yes 7 1 4 3 4 1 2 2

High No 0 1 0 1 0 4 2 5

Yes 3 10 4 21 8 11 7 65

Table 2: Data from Equipment section

We begin our search for a descriptive model by fitting each of the log-linear models that
include all the uniform order terms (Table 7), as well as all of the partial association models
(Table 4). We note that two of the 4-way margins contain one zero ([ACDE] and [ABDE]),
thus we must be very careful with models that include terms that require those configurations.

In the absence of zeros, all the partial association models in Table 4 would have 8 degrees
of freedom. However, six of them depend on either margin [ACDE] or [ABDE] (models 1,
2, 6, 7, 8 an 9) and one (model 5) on both. Thus we need to adjust the degrees of free-
dom to assess the significance of any goodness-of-fit test statistic. For the first group, the
marginal zero prevents us from estimating one of the parameters, while forcing 2 elemen-
tary cells to have zero expected counts; thus we have to adjust the degrees of freedom by
subtracting 1. In the case of model [ACDE][ABDE], the marginal zeros prevents the esti-
mation of 2 parameters, while producing 3 expected elementary counts with zeros; then we
have to adjust the degrees of freedom again by subtracting 1, producing 7 degrees of freedom.

Inspecting the results reported in Table 7, we see that we need at least some 1st-order in-
teractions to obtain a well fitting model. Results in (Table 4) suggest to start with a model
that incorporates the two-way interactions uAE, uBE, uDE, uAC , and uCD. The minimal
model that includes those interactions, [AE][BE][DE][AC][CD], does not fit the data very
well by itself (G2 = 33.92, d.f. = 21), so we will use it as a starting point for a model search.
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Model G2 d.f. p-value
All 1-way 278.0422 26 0
All 2-way 18.96407 16 0.2705308
All 3-way 4.41867 6 0.6202117
All 4-way 0 0 –

Table 3: All k-way interactions models for the Equipment data. (Note that model with
all 4-way interactions is saturated, with 0 degrees of freedom, due to constrains induced by
zeros in the margins corresponding to the minimal configurations).

Model Test G2 d.f. p-value
1 [BCDE][ACDE] uAB = 0 6.913625 7 0.4379284
2 [BCDE][ABDE] uAC = 0 14.84056 7 0.03809831
3 [BCDE][ABCE] uAD = 0 11.58159 8 0.1708711
4 [BCDE][ABCD] uAE = 0 60.14289 8 4.36966× 10−10

5 [ACDE][ABDE] uBC = 0 4.828682 7 0.6808607
6 [ACDE][ABCE] uBD = 0 11.54538 7 0.1165359
7 [ACDE][ABCD] uBE = 0 15.69821 7 0.02802116
8 [ABDE][ABCE] uCD = 0 14.83598 7 0.03816039
9 [ABDE][ABCD] uCE = 0 8.978162 7 0.2542277
10 [ABCE][ABCD] uDE = 0 27.40129 8 0.0006025608

Table 4: All partial association models for the Equipment data.

We used the computer program MIM and its bidirectional stepwise procedure based on
conditional G2 tests to search in the space of graphical models. We find a good fitting model
in just one step, by adding the term corresponding to the configuration [BC]. The final
model, [AE][BE][BC][DE][AC][CD], provides a good fit to the data, with G2 = 28.42 and 20
degrees of freedom. The corresponding graph is shown in Figure 1.

We can repeat the model selection procedure using AIC as our criterion for assessing
fit, and we get the sequence of models [AE][BE][DE][AC][CD] → [CDE][BE][ACE] →
[CDE][BDE][ACE]. The selected model also fits the data very well (G2 = 17.63, df=16),
but it is much more complex, thus we choose to retain the simpler model. A stepwise search
based on the BIC criterion results in the same model selected by conditional G2 tests.

Since our final model,[AE][BE][BC][DE][AC][CD], is graphical we can read some of in-
teresting structural features directly from the graph in Figure 1. First, we see that given
variables C and E, all the rest are mutually independent. This means that for each combi-
nation of the overall satisfaction with the equipment and whether or not the output quality
meets the client’s expectations, the rest of the characteristics measured by the other ques-
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A BD

C

Figure 1: Graphical representation of the final model, [AE][BE][BC][DE][AC][CD], for the
equipment data.

tions are mutually independent. Second given the answers to questions A, B and D, the
overall level of satisfaction with the equipment turns out to be independent of whether or
not the output quality meets the client’s expectations.

As a further illustration, we analyze the overall satisfaction questions together. Table 5
show the selected variables that result in a 56 = 15, 625 contingency table. Again, because
this is even sparser than in the previous illustrative extract, we dichotomize the variables
by grouping the first three levels (1,2,3=Low) and last two levels (4 and 5 = High). Table 6
shows the resulting cross-classification.

Even the collapsed 26 table presents challenges for our analysis, with 3 out of the 20 3-way
margins containing zero counts (configurations [ADE], [BDF] and [DEF]), 10 out of the 15
4-ways margins with zeros, and all of the 5-way margins containing zeros. As a consequence,
we have to be extra careful when fitting high-order models. For this same reason, this time
we do not try to fit the partial association models to begin our model search.

Label Description
A Overall satisfaction level with equipment
B Overall satisfaction level with sales support
C Overall satisfaction level with technical support
D Overall satisfaction level with training
E Overall satisfaction level with supplies
F Overall satisfaction level with terms conditions and pricing

Table 5: Overall satisfaction variables

By fitting all the models that include all the same order terms, we can start our search
for a good model by examining models that include 2-way interactions.
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D High Low

E High Low High Low

F High Low High Low High Low High Low

A B C

High High High 22 9 6 2 0 2 1 3

Low 2 1 0 3 0 1 1 3

Low High 2 8 3 7 0 1 0 5

Low 2 2 0 2 0 0 0 3

Low High High 2 5 0 7 0 0 1 1

Low 0 1 0 2 0 0 0 1

Low High 0 1 0 8 0 0 0 6

Low 2 4 1 10 0 0 0 12

Table 6: Data from Overall satisfaction questions

k Deviance d.f. p-value
1 187.7329 57 7.771561e-16
2 42.2594 42 0.4597639
3 7.085046 9* 0.6283

(*) adjusted for sparsity

Table 7: All k-way interactions models for Overall Satisfaction data, for k = 1, 2 and 3.

Starting from the independence model ([A][B][C][D][E][F]), we used MIM to perform a
bidirectional stepwise search using conditional likelihood ratio tests, and the AIC and BIC
criteria. The final models are summarized in Table 8. Note that again we have had to
adjust the degrees of freedom due to the presence of a zero in the [DEF] margin. This time,
stepwise based on conditional tests of the form ∆G2 and AIC select the same model, while
BIC selects a different, more parsimonious one, but whose fit is not so good. Furthermore,
these two models are nested and the conditional test between them gives conditional test
value of ∆G2 = 24.368 with 13 degrees of freedom, suggesting that the inclusion of the extra
terms has a significant effect. Thus we select model [DEF][BEF][AEF][AC] and display its
independence graph in Figure 2

We can read some interesting structural features of the data directly from the corre-
sponding independence graph. First, given satisfaction with the equipment (A), the overall
satisfaction with technical support (C) is independent from all other items. Second, joint
knowledge of the satisfaction level with supplies (E) and conditions and pricing (F) makes
satisfaction with sales support (B) and satisfaction with training (D) independent from all
other items. Furthermore, it also makes the pair of variables, A and C, independent from
the rest of the variables.
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Criterion Final Model G2 d.f.
∆G2 and AIC [DEF][BEF][AEF][AC] 54.910 39*

BIC [EF][DE][BF][AF][AC] 79.278 52
(*) adjusted for sparsity

Table 8: Final models selected by stepwise search using conditional likelihood ratio tests, as
well as the AIC and BIC criteria for the overall satisfaction data.

E

A BD

F

C

Figure 2: Graphical representation of the final model, [DEF][BEF][AEF][AC], for the overall
satisfaction data.

4 Related Methodologies

As we noted in the introduction, while log-linear models are often useful in exploring rela-
tively large sparse contingency tables, they typically can only cope with subsets of variables
from lengthy survey questionnaires. A powerful extension to these models involves the intro-
duction of latent categorical variables, and then use the model of conditional independence
of the observed (or manifest variables) given the latent variable. These latent class mod-
els often provide a more parsimonious interpretation for the relationships observed in the
contingency table, and with relatively small numbers of parameters. Goodman (1974,1979,
1984) is largely responsible for the basic methodology used with latent class models, but
their likelihood functions involve complexities such as multiple modes and some identifica-
tion problems (see Fienberg et al., 2010).

Another related class of models introduced more recently utilizes a different for of latent
structure through the notion of mixed membership of individuals in idealized classes, or
grade of membership, and has been applied to relatively large contingency table problems
by Erosheva, Fienberg, and Joutard (2007) and Manrique-Vallier and Fienberg (2010).

Space limitations do not permit the exploration of these approaches in the context of
customer satisfaction surveys here.
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