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Summary

We revisit the heterogeneous closed population multiple recapture problem, modeling individual-level
heterogeneity using the Grade of Membership model (Woodbury et al., 1978). This strategy allows us
to postulate the existence of homogeneous latent “ideal” or “pure” classes within the population, and
construct a soft clustering of the individuals, where each one is allowed partial or mixed membership in
all of these classes. We propose a full hierarchical Bayes specification and a MCMC algorithm to
obtain samples from the posterior distribution. We apply the method to simulated data and to three real
life examples.

Key words: Capture-recapture; Dependence; Grade of Membership models; Heterogeneity;
Hierarchical Bayes; BIC; Log-linear models; Rasch model.

1 Introduction

From the early work of Petersen (1896) to counting in fish populations (but see Goudie and Goudie
(2007)) through the 1960’s, e.g., see Cormack (1968), most of the focus in the literature on capture
recapture approaches to the estimation of the size of closed biological populations focused on the
independence of captures or lists and homogeneous capture probabilities within lists. Attention to
comparable problems in non-animal populations came later but still had a similar focus and used by
and large similar models. It was only with the emergence of models for multivariate categorical data
in the 1960’s and a shift to other types of applications that different proposals emerged for incorporat-
ing departures from this basic homogeneous independence structure in the form of heterogeneity of
capture probabilities among individuals (units), e.g., see Sanathanan (1972, 1973) and/or associations
between or among lists, see Fienberg (1972); Bishop et al. (1975). Simultaneous consideration of both
types of departures appeared in the literature only in the 1990’s, although even then, most approaches
to heterogeneity assumed a very specific form, such as that associated with the Rasch model (Rasch,
1980) from item response theory in psychometrics, e.g., see Darroch et al. (1993); Agresti (1994);
International Working Group for Disease Monitoring and Forecasting (1995a, b); Fienberg et al.
(1999). Similar models were introduced in the animal multiple recapture literature but with different
notation, e.g., see Norris and Pollock (1996). In some applications such approaches have proven quite
successful but in others we appear to require a more flexible form of latent variable model.

In this paper we propose an individual mixture approach to dependence in multiple recapture prob-
lems based on the Grade of Membership (GoM) model introduced by Woodbury et al. (1978) and
developed from a hierarchical Bayesian latent variable perspective by Erosheva (2002). For full details
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and an application to the analysis of disability data, see Erosheva et al. (2007). This mixture model
has a different interpretation than most others in the statistical literature and especially those used in a
multiple recapture context, c.f. Pledger (2000, 2005).

In Section 2, we describe the GoM model and then explain how it can be adapted for use in the
context of multiple recapture estimation. In Section 3, we outline the details regarding estimation
using Monte Carlo Markov chain methodology. Then, in Section 4, we apply the new model to a
series of examples drawn from the literature and compare the resulting estimates to those derivable
from log-linear models and Rasch models for heterogeneity. We conclude with a discussion of where
we see the new model fitting into the array of existing approaches as a practical tool for applied
researchers.

2 Modeling Heterogeneity Using the Grade of Membership Model

2.1 The Grade of Membership model

The Grade of Membership (GoM) model has been used to get a low dimensional representation for
high-dimensional categorical data where we think of each individual as a weighted combination of a
small number of “idealized” individuals or “pure types” within the population of interest.

We assume the existence of a specific number, K, of such “extreme classes” or “pure types”. Sup-
pose that there are N individuals on the population. For the i-th individual, for i 2 f1; . . . ;Ng, we
associate a J-dimensional binary vector of manifest variables xi ¼ ðxi1; . . . xiJÞ. For any individual that
is a full member of the k-th extreme class (i.e. an “ideal” individual of the k-th class), we assume that
the probability of a positive response in the j-th entry of the manifest variables vector is the same, i.e.,
Pr ðXij ¼ 1 j i-th individual in k-th class) ¼ ljk.

We associate each individual with its own K-dimensional “membership vector” gi ¼ ðgi1; gi2; . . . ; giKÞ
representing how much of a member of each class this particular individual is ðgik > 0;

PK
k¼1 gik ¼ 1Þ.

We operationalize the idea of “partial membership” by setting the distribution of each manifest variable
given the membership vector as

pðxij j giÞ ¼
PK
k¼1

gijkl
xij

jk ð1� ljkÞ1�xij :

In what follows, we use pð�Þ to denote indistinctly the probability density function or the probability
mass function of the argument, as needed. We further assume that the item responses j are condition-
ally independent given membership vectors. This condition, sometimes referred as latent conditional
independence or local independence (Holland and Rosenbaum, 1986), expresses the idea that the
membership vector g completely explains the dependence structure between the J binary manifest
variables. By making this assumption, we get

pðxi j giÞ ¼
QJ
j¼1

PK
k¼1

gijkl
xij

jk ð1� ljkÞ1�xij : ð1Þ

If we further assume that for each individual, the (unobserved) membership vectors gi are drawn
independently from a common distribution Ga, with support on the K � 1 dimensional probability
simplex, �, we can construct the observed likelihood

pðxiÞ ¼
Ð
D

QJ
j¼1

PK
k¼1

gijkl
xij

jk ð1� ljkÞ1�xij GaðdgÞ : ð2Þ

The net effect is that we are representing a collection of 2J counts in terms individual mixtures of K
pure types, thus producing a very substantial reduction in dimensionality. The only problem is we still
have to determine the pure types for a given value of K.
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Erosheva et al. (2007) have shown that the GoM model in (1) admits an augmented data representa-
tion that leads to the augmented data likelihood

pðx; z j l; gÞ ¼
QN
i¼1

QJ
j¼1

QK
k¼1
ðgikl

xij

jk ð1� ljkÞ1�xijÞzijk ; ð3Þ

with zi ¼ ðzi1; . . . ; ziJÞ 2 Z ¼ f1; 2 . . . ;KgJ and zijk ¼ Iðzij ¼ kÞ. From here the observed data likeli-
hood can be easily obtained through marginalization

pðx j a; lÞ ¼
QN
i¼1

Ð
D

P
z2 Z

QJ
j¼1

QK
k¼1
ðgkl

xij

jk ð1� ljkÞ1�xijÞzjk GaðdgÞ : ð4Þ

The representation in Eq. (3) is particularly important because we use it as the basis for the poster-
ior sampling strategy we describe in Section 2.2.2.

2.2 Hierarchical Bayes formulation of multiple recapture estimation
of a closed population total using the Grade of Membership model

2.2.1 Basic setup

Consider a closed population of N individuals, with N unknown. From this population we perform J
capture events. These “capture events” can be understood as the physical capture of animals in ecol-
ogy applications or as the elaboration of lists in epidemiological applications. We represent the com-
plete capture history of the ith individual ði ¼ 1; . . . ;NÞ by a vector xi ¼ ðxi1; xi2; . . . ; xiJÞ with xij ¼ 1
if the i-th individual was captured in the j-th capture event and 0 otherwise. We assume that from the
N individuals present in the population, we are only able to capture or observe n of them ðn � NÞ,
where all capture history vectors of the form xi ¼ ð0; 0; . . . ; 0Þ are missing for all the cases. We
arrange the capture history so that xi ¼ ð0; 0; . . . ; 0Þ for all i ¼ nþ 1; . . . ;N.

2.2.2 Model specification

Using Eq. (3) for the likelihood of the GoM model and understanding N as a parameter, we get that
the full joint posterior for the complete data will be,

pðN;a; l; g j x; zÞ / N
n

� �
pðN;a; l; gÞ

QN
i¼1

QJ
j¼1

QK
k¼1
ðgikl

xij

jk ð1� ljkÞ1�xijÞzijk Ifnþ1;nþ2;...gðNÞ ; ð5Þ

where pðN;a; l; gÞ is the joint prior distribution of ðN;a; l; gÞ. If we further assume that N;a and l
are a priori independent and that given a; gi are independent for all i, the above expression simplifies
to

pðN;a; l; g j x; zÞ / N
n

� �
pðNÞ pðaÞ pðlÞ

QN
i¼1

pðgi j aÞ

�
QJ
j¼1

QK
k¼1
ðgikl

xij

jk ð1� ljkÞ1�xijÞzijk Ifnþ1;...gðNÞ ; ð6Þ

We complete the specification by setting the hyper priors

ljk�
iid

Betaðh1; h2Þ ; ð7Þ

gi j a�
iid

Dirichlet ða1;a2; . . . ;aKÞ ; ð8Þ

pðNÞ / ðN � lÞ!
N!

If½l;Nmax� \NgðNÞ for some l � Nmax and Nmax large enough : ð9Þ
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The selected prior for N in Eq. (9) has the advantage of leading to proper and tractable expressions
for the posterior while including many relevant cases, such as the truncated uniform ðl ¼ 0Þ and the
truncated Jeffrey’s ðl ¼ 1Þ (Fienberg et al., 1999). The upper truncation limit, Nmax, is included for
computational convenience and because its inclusion guaranties a proper posterior. Also, we note that,
although the prior distribution for N in principle allows it, we will not want N to take values below
the observed count, n. This will be automatically enforced during the posterior computation, because
the likelihood in Eq. (6) will in fact truncate and re normalize the posterior according to the data,
making values of N smaller than n to have probability zero.

We follow Erosheva et al. (2007) by reparameterizing a ¼ ða0 � x1; . . . ;a0 � xKÞ with a0 > 0 andP
k xk ¼ 1 and setting the hyper priors

a0 � Gamma ðt; bÞ ; ð10Þ
x � Dirichlet ð1; . . . ; 1Þ ; ð11Þ

where b is the inverse scale parameter. Under this reparametrization we can interpret xk as the propor-
tion of the captures that belongs to the k-th mixture component and a0 > 0, as a parameter governing
the spread of the membership distribution.

3 Bayesian Posterior Estimation Using Monte Carlo Markov Chain

If N were known, generating samples from the posterior distribution in Eq. (6) would be a straightfor-
ward exercise, directly applying the algorithm developed in Erosheva et al. (2007). Here we present an
adaptation of this algorithm to carry out our computations.

The main difficulty in constructing a MCMC sampler for this case is the fact that, as Basu and
Ebrahimi (2001) and Fienberg et al. (1999) point out, N determines the length of the vectors g and z,
and N is itself a parameter that we have to estimate. For this reason we consider the partitions
g ¼ ðg1; g2Þ; z ¼ ðz1; z2Þ; x ¼ ðx1; x2Þ such that the first part ðg1; z1; x1Þ corresponds to all individuals
who are present in the sample ði ¼ 1; . . . ; nÞ, and the second part ðg2; z2; x2Þ corresponds to all the
individuals who were not captured ði ¼ nþ 1; . . . ;NÞ.

From the specification of the model in Eq. (6), we can readily write down the full conditional
posteriors for l, z1 and g1, and obtain the ðmþ 1Þ-th draw for a Gibbs sampler,

� z1: for i ¼ 1 . . . n and j ¼ 1 . . . J draw

zðmþ1Þ
ij �indep

Discrete ð1;...;JÞ ðp1; . . . ; pKÞ ; ð12Þ

with pk ¼ gikl
xij

jk ð1� ljkÞ1�xij :
� l: for j ¼ 1 . . . J and k ¼ 1 . . . K draw

l
ðmþ1Þ
jk �indep

Beta h1 þ
PN
i¼1

xikzijk; h2 þ
PN
i¼1
ð1� xijÞ zijk

� �
: ð13Þ

� g1: for i ¼ 1 . . . n draw nothing

gðmþ1Þ
i �indep

Dirichlet ða1 þ ziþ1; . . . ;aK þ ziþKÞ ; ð14Þ

where ziþk ¼
PJ

j¼1 zijk.

The full conditional distribution for a does not have any recognizable form. Thus we use a Metro-
polis-Hastings within Gibbs step (Robert and Casella, 2004). Erosheva (2002) proposes a two-stage
sampling strategy, obtaining samples for a0 and for x through the use of two separate Metropolis-
Hastings steps. We have achieved better results treating the vector a as a whole using the following
log scale Gaussian random walk Metropolis-Hastings step:
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1. (Proposal step) Obtain a sample for a* ¼ ða*1; . . . ;a*KÞ from

a*k �
indep:

lognormal ðaðmÞk ; s2Þ ;

for k ¼ 1; . . . ;K. The parameter s2 is a tuning parameter that we have to optimize to achieve a
good balance between acceptance and exploration of the support (Robert and Casella, 2004).
Note that the distribution of a* depends explicitly on the current value of a.

2. (Acceptance step) compute

r ¼ min 1;
QK
k¼1

a*k
ak

� �
a*0
a0

� �t�1

e�bða�0�a0Þ Gða*0Þ
Gða0Þ

QK
k¼1

Gða*kÞ
ðakÞ

� �N QK
k¼1

QN
i¼1

gik

� �a�k�ak
( )

;

and make

aðmþ1Þ ¼ a* with probability r :

aðmÞ with probability 1� r :

(

To obtain a full conditional posterior of ðN; z2; g2Þ, we first note that it only depends on ða; lÞ.
Then we apply the well known factorization

pðN; z2; g2 j . . .Þ ¼ pðN; z2; g2 j a; lÞ

¼ pðN j a; lÞ pðz2 j N;a; lÞ pðg2 j z2;N;a; lÞ ;
and construct the relatively simpler samplers for the incomplete conditionals pðN j a; lÞ and
pðz2 j N;a; lÞ by integration,

pðN j a; lÞ ¼
ð

pðN; z2; g2 j a; lÞ dðg2; z2Þ

/ N
n

� �
pðNÞ GðaþÞ

Gðaþ þ JÞ
P
z2Z

QK
k¼1

Gðak þ zþkÞ
GðakÞ

� � QJ
j¼1
ð1� ljzjÞ

" #N�n

ð15Þ

for N integer such that N 	 n; and

pðz2 j N;a; lÞ ¼
ð

pðz2; g2 j N;a; lÞ dg2

/
QN

i¼nþ1

QK
k¼1

Gðak þ ziþkÞ
� � QJ

j¼1
ð1� ljzijÞ

" #
ð16Þ

where Z ¼ f1; 2; . . . ;KgJ ; zjk ¼ Ifzj¼kg; zþk ¼
PJ

j¼1 zjk and aþ ¼
PK

k¼1 ak.
Finally we note that pðg2 j z2;N;a; lÞ is just the full conditional distribution of g2,

pðg2 j N; z2;a; lÞ /
QN

i¼nþ1

QK
k¼1

gakþziþk�1
ik : ð17Þ

One single joint sample ðN; z2; g2Þðmþ1Þ from the full conditional distribution pðN; z2; g2 j . . .Þ will be
then constructed sampling sequentially from the distributions in Eqs. (15), (16) and (17). Note also
that for our selection of priors, Eq. (15) is truncated negative binomial on N � n (Fienberg et al.,
1999), and that a sample from Eq. (17) can be constructed as N � n independent samples from a
Dirichlet ða1 þ ziþ1; . . . ;aK þ ziþKÞ distribution, just as in Eq. (14).
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4 Examples

We have applied our new model and method to a number of examples from the literature; here we
report on four examples, the first of which is based on a simulation from the GoM model in Eq. (1).
The remaining three examples are based on actual data drawn from a series of applications with
increasing numbers of lists: diabetes patients in Casale Monferrato, Italy (Bruno et al., 1994); children
suffering a specific congenital anomaly in Massachusetts (Wittes et al., 1974; Fienberg, 1972); and
killings and disappearances due to political violence in the District of Chungui, Peru (Ball et al.,
2003).

For all the examples we have fitted the GoM model using the MCMC algorithm from Section 2.2.2
for different values of K using the diffuse priors

ljk�
iid

Beta ð1; 1Þ ;
a0 � Gamma ð1; 2Þ ;
x � DirichletK ð1; . . . ; 1Þ ;
pðNÞ / IfN<105 \Ng :

For comparison, we have also fitted independence and more complex log-linear models (Fienberg,
1972) and the Bayesian Rasch model from Fienberg et al. (1999). The selection of the “best” log-
linear model has been performed using stepwise search based on the Bayesian Information Criterion
(BIC). The stepwise procedure was implemented similarly to a regression model search: starting from
the independence model, we added new interaction terms, one at a time, so that at each step we
obtained the biggest improvement in the BIC score computed over the observed data, until no further
improvement was possible.

For each example we present the point estimate (N̂N) and a 95% interval. For the log-linear models
the interval is an equal tail 95% bootstrap confidence interval (Efron and Tibshirani, 1993) and for the
Bayesian models (GoM and Rasch) it is an equal tail 95% credible interval constructed from the
posterior sample. The point estimates presented for the Bayesian models are the posterior modes.

The chains we obtained fitting the GoM models were reasonably well behaved, converging to the
stationary distribution after a burn in period of 10 000 iterations for K ¼ 2 and 20 000 for K ¼ 3 for
all the cases except for the Perú data, where we required longer runs of 30 000 iterations for K ¼ 3,
55 000 for K ¼ 4 and 30 000 for K ¼ 5. In all cases we took a total of 100 000 samples and sub
sampled the resulting chains retaining one sample every t samples and discarded the rest, with t
ranging from 10 to 40.

4.1 Simulated data (J ¼ 4)

We simulated 2000 draws from the GoM model (1) with J ¼ 4 lists, K ¼ 3 extreme profiles, member-
ship vectors gi�

iid
Dirichlet ½0:8 � ð0:1; 0:5; 0:4Þ� and extreme profile capture probabilities

½ljk� ¼

0:5 0:09 0:2

0:1 0:7 0:01

0:29 0:14 0:1

0:05 0:035 0:35

2
6664

3
7775

The resulting data is summarized in the 24 cross classification in Table 1. Our goal is to predict the
total (known to be N ¼ 2000) using only the counts on the cells other than (0, 0, 0, 0).

In Table 2 we present a summary of our results. As expected, the independence model fits poorly
(with a deviance of G2 ¼ 83:06 on 10 df.), and overestimates the total. The BIC-based stepwise
search in the space of hierarchical log-linear models selects the model [3] [12] [24], which provides
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both a very good fit and estimate of N. In contrast, the Bayesian Rasch model misses the true value,
grossly overestimating it. This appears to be due to the inability of the Rasch model to accommodate
negative dependence. Negative dependence may also explain why the independence model also over-
estimates the true value of N.

For fitting the GoM models we have applied the MCMC algorithm in 2.2.2, taking 100 000 samples
and discarding the first 20 000 as a burn in period. The resulting samples are well behaved, leading to
estimates close to the true value. Interestingly both two GoM (K ¼ 2 and K ¼ 3) models lead to good
estimates for N, even when the data was actually generated using K ¼ 3.

During the creation of this example we have tried different combinations of parameters. In most
cases, the parameter N was correctly estimated by the GoM models, as might be expected, and also
by the loglinear-BIC. In some other cases cases though, only the GoM model produced a good esti-
mate. However in many of these difficult cases we were unable to consistently replicate the simulation
and obtain good estimates every time.

4.2 Diabetes data

Bruno et al. (1994) used multiple recapture data from four sources to estimate the prevalence of
diabetes mellitus in Casale Monferrato, Italy on October 1st, 1988. They observed a total number of
n ¼ 2069 known cases and applying log-linear modeling to obtain an estimate of N̂N ¼ 2; 771 for the
total number of cases. When they first stratified the data and then fit the same log-linear model, their
estimate was N̂N ¼ 2; 586. These data have been re analyzed a number of times, e.g., International
Working Group for Disease Monitoring and Forecasting (1995a); Fienberg et al. (1999). Table 3 shows
the cross classification of the counts for the four different sources used to identify the known diabetes
cases as reported by Fienberg et al. (1999).

Table 4 shows a summary of our estimates using this dataset. As in the previous example, we infer
from the deviance that the fit of the independence model is poor. Both the Rasch and the “best” log-
linear approaches give estimates very close to the ones reported by Bruno et al. (1994), International
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Table 1 Simulated data (N ¼ 2000, observed n ¼ 1323).

List-4

Yes No
List-3 List-3

Yes No Yes No

List-2 Yes List-1 Yes 161 40 48 10
No 494 88 41 1

No List-1 Yes 73 11 5 2
No 123 193 33 677

Table 2 Estimates for the simulated data (N ¼ 2000, observed n ¼ 1323).

Model df Deviance N̂N 95% Interval

Independence
Log-linear-BIC ([3] [12] [24])

10
8

83.06
12.46

2425
1994

[2269, 2586]
[1878, 2140]

Bayesian Rasch � � 2773 [2511, 3252]
Bayesian GoM ðK ¼ 2Þ � � 2001 [1881, 2235]
Bayesian GoM ðK ¼ 3Þ � � 2060 [1909, 2327]
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Working Group for Disease Monitoring and Forecasting (1995a), i.e., N̂N ¼ 2771. The log-linear-BIC
model also provides a very good fit to the observed data (G2 ¼ 7:617 on 5 df.)

The GoM model with K ¼ 2 gives an estimate of N very close to the independence model, which
we believe is a bad estimate; however, when we increase the number of extreme profiles to K ¼ 3, the
GoM model again estimates N in the vicinity of 2 700, as does the best log-linear model and the
Rasch model.

4.3 Congenital anomalies data (J ¼ 5)

Fienberg (1972) reports on a 5-list multiple recapture dataset originally analyzed by Wittes et al.
(1974) regarding positive diagnostics of a specific congenital anomaly in children in Massachusetts.
The dataset presents five available sources of positive diagnostics, labeled List-I to List-V, and a total
of n ¼ 537 known cases. Fienberg (1972) reports a best estimate of N̂N ¼ 634 using the loglinear
model [12] [13] [24] [45].

In Table 5 we reproduce the 25 cross classification table as reported by Fienberg (1972). Table 6
shows our estimates for this dataset. As in all previous cases, independence seems to be a bad fit
(G2 ¼ 93:45 on 25 df.). The best log-linear model chosen by a stepwise application of BIC is slightly
simpler than the one proposed by Fienberg (1972), yielding to the slightly lower estimate N̂N ¼ 620
(G2 ¼ 30:56 on 22 df).

All the estimates from the GoM model are close to one another and give similar 95% intervals,
suggesting that K ¼ 2 might offer sufficient heterogeneity to represent that which is present in this
sample. As in the previous cases, the estimates obtained from fitting the GoM models are very close
to the estimate obtained from the log-linear-BIC. The Rasch model, however, gives an estimate well
above the rest. This suggess again that the Rasch model is producing an overestimate due to to its
inability to capture negative dependence.

8 D. Manrique-Vallier and S. E. Fienberg: Mixed Membership Capture-Recapture Methods

Table 3 Diabetes data.

Clinics (4)

Yes No
Hospitals (3) Hospitals (3)

Yes No Yes No

Prescriptions (2) Yes Reimbursements (1) Yes 58 46 14 8
No 157 650 20 182

No Reimbursements (1) Yes 18 12 7 10
No 104 709 74 ??

Table 4 Estimates for the diabetes data.

Model df Deviance N̂N 95% Interval

Independence 10 217.48 2251 [2228, 2275]
Log-linear-BIC ([12] [23] [24] [34]) 5 7.617 2771 [2543, 3097]
Bayesian Rasch � � 2680 [2549, 2934]
Bayesian GoM ðK ¼ 2Þ � � 2293 [2250, 2347]
Bayesian GoM ðK ¼ 3Þ � � 2640 [2483, 3482]
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4.4 Killings in Chungui (J ¼ 6)

Ball et al. (2003) in a report published as part of the Peruvian Truth and Reconciliation Commission
Final Report (Comisi�n de la Verdad y Reconciliaci�n, 2003) analyzed multiple capture data to esti-
mate the total number of people assassinated or disappeared due to political violence in Peru between
1980 and 2000. There were a total of six available lists documenting known cases of killings and
disappearances, although one of them was restricted to only one geographical location and some others
were quite small. Ball et al. (2003) estimations were constructed applying 3-list log-linear modeling to
a total of 58 geographic strata, collapsing some of the sources based on homogeneity considerations.

Table 7 shows data corresponding to the district of Chungui, department of Ayacucho, where a total
of n ¼ 1366 unique individuals could be identified. This district corresponds a subset of stratum 25 in
Ball et al. (2003)1, and is the only geographical location for whom we have six simultaneously avail-
able lists. As we see in Table 7, the resulting cross classification is extremely sparse.

Table 8 summarizes our computations using different models. As in all previous cases, indepen-
dence did not provide a good fit to the data (G2 ¼ 709:6 on 56 df.), but the log-linear-BIC approach
yielded an excellent fit (G2 ¼ 6:63 on 52 df.), giving an estimate of N̂N ¼ 2270.

We were unable to fit the Rasch model in this example because all of our attempts to sample from
the posterior distribution ended up with MCMC chains that were badly behaved, suggesting the inade-
quacy of the Rasch model to capture the specific type of heterogeneity present in this sample. In
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Table 5 Congenital anomalies data.

List-I

Yes No
List-II List-II

Yes No Yes No
List-III List-III List-III List-III

Yes No Yes No Yes No Yes No

List-IV Yes List-V Yes 2 8 3 5 0 23 0 30
No 5 25 1 22 3 37 2 97

No List-V Yes 2 18 5 36 0 34 3 83
No 1 19 4 27 1 37 4 ??

Table 6 Estimates for the congenital anomalies data.

Model df Deviance N̂N 95% Interval

Independence 25 93.45 639 [620, 659]
Log-linear-BIC ([12][13][45]) 22 30.56 620 [600, 644]
Bayesian Rasch � � 712 [661, 824]
Bayesian GoM ðK ¼ 2Þ � � 605 [584, 636]
Bayesian GoM ðK ¼ 3Þ � � 622 [596, 706]
Bayesian GoM ðK ¼ 4Þ � � 620 [590, 717]

1 Stratum 25 comprised the districts of Chungui and Luis Carranza, in the department of Ayacucho. The estimate from Ball
et al. (2003) (as appears in Electronic Annex #12 Comisión de la Verdad y Reconciliación (2003)) for the whole stratum 25 is
N̂N ¼ 2408.
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contrast, all GoM models behaved very well, giving estimates very close to the best log-linear model,
although with a slightly wider 95% interval. The similarity of the estimates for K ¼ 2; 3; 4 and 5
suggests that K ¼ 2 would be enough to capture the heterogeneity structure present in this sample.

5 Discussion

In this article we have described a Bayesian version of the Grade of Membership model first intro-
duced by Woodbury et al. (1978) and shown how we can use it to model individual level heterogene-
ity in multiple recapture contexts. We illustrated the methodology in a series of examples and com-
pared the estimate from our method with those from more traditional approaches.

The examples we analyzed share some interesting characteristics. First, in none of them does the
independence assumption lead to good results. In fact, with the possible exception of the congenital
anomalies data where there appears to be a canceling effect of positive and negative dependencies,
assuming independence led to either over- or under-estimation of N, with deceptively tight confidence
bounds. In contrast, when we allowed for more complex log-linear models and selected a best one by
a stepwise search based on the BIC score, the results were consistently good. The use of the GoM
model to estimate the population size always gave results comparable with the best log-linear models
chosen by stepwise search based on BIC.

10 D. Manrique-Vallier and S. E. Fienberg: Mixed Membership Capture-Recapture Methods

Table 7 Killings in Chungui data.

List-VI

Yes No
List-V List-V

Yes No Yes No
List-IV List-IV List-IV List-IV

Yes No Yes No Yes No Yes No

List-III Yes List-II Yes List-I Yes 0 0 1 0 0 0 2 0
No 0 0 0 0 0 0 0 3

No List-I Yes 0 0 14 1 0 0 51 4
No 0 0 1 1 0 0 1 8

No List-II Yes List-I Yes 0 0 0 0 0 0 0 0
No 0 0 2 0 0 0 0 1

No List-I Yes 0 1 4 237 0 0 18 286
No 0 0 0 727 0 0 3 ??

Table 8 Estimates for killings in Chungui data. We were not able to fit the
Bayesian Rasch model.

Model df Deviance N̂N 95% Interval

Independence 56 709.6 1991 [1908, 2098]
Log-linear-BIC ([14] [23] [34] [36]) 52 56.63 2270 [2138, 2436]
Bayesian GoM ðK ¼ 2Þ � � 2244 [2086, 2437]
Bayesian GoM ðK ¼ 3Þ � � 2217 [2068, 2417]
Bayesian GoM ðK ¼ 4Þ � � 2231 [2064, 2390]
Bayesian GoM ðK ¼ 5Þ � � 2211 [2063, 2401]
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In our examples, low values of K appear to do a remarkably good job of capturing or approximat-
ing the heterogeneity structure present in the samples, leading to reasonable estimates of N in virtually
all cases. In fact, in the examples and in other analyses we have performed, once for a given value of
K we obtained an estimate comparable to that of the “best” log-linear model, all the subsequent GoM
models, with higher values of K, yielded similar estimates. We believe this is due to the relatively
small number of lists (4, 5, and 6) as compared with the large number of items in other applications
of the GoM approach, e.g., J ¼ 16 binary disability measures in Erosheva et al. (2007). Thus we
believe one need not search for an “optimal” value of K for typical multiple recapture applications,
and we can expect that K ¼ 2 or K ¼ 3 will suffice in almost all contexts.

A formal evaluation of the best number of extreme profiles, however, remains an open issue, espe-
cially for large numbers of lists. Erosheva et al. (2007) explored model selection with the Bayesian GoM
model in the context of their analysis of disability data. In their analysis with simulated data they ex-
plored the performance of DIC, BICM, BIC, truncated Chi squared ðc2

trÞ and AICM indices and obtained
good results with the last three. The application of these indices to evaluate the fit of the models based on
the observed counts in the contingency tables looks like a natural starting point in our problem.

Our final example, estimating killings in an area of Peru, illustrates the applicability of different
modeling approaches to sparse data situations, ones where most statistical analysts have in the past
been reluctant to apply modern multiple recapture methods.

Finally, we note that Pledger et al. (2003) and others have explored the use of population-level mixture
models and closed population estimators to the problem of open populations. We think that our indivi-
dual-level mixture models may provide a useful complement to these approaches in such contexts.

6 Appendix A – Derivation of Equations (15) and (16)

1. pðN j a; lÞ (Eq. (15))
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where Z ¼ f1; 2; . . . ;KgJ ; zjk ¼ Ifzj¼kg; D is the K � 1 dimensional probability simplex and
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2. pðz2 j N;a; lÞ ðEq: ð16ÞÞ
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