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Abstract 
 

When analyzing longitudinal data we need to balance our understanding of individual variability with the production of 
meaningful and interpretable summaries of overall population tendencies. This is specially true when those in the target 
population are know to be heterogeneous in their ways of progressing over time due to unobserved individual traits. 
Additional complications arise when the data are discrete and multivariate so that the resulting contingency tables are very 
sparse. We propose a new family of models to analyze such data by combining features from a version of the cross-
sectional Grade of Membership Model (Erosheva et al., 2007) and from the longitudinal Multivariate Latent Trajectory 
Model (Connor, 2006) and them to data the National Long Term Care Survey (NLTCS), a longitudinal survey with six 
completed waves aimed to assess the state and characteristics of disability among U.S. citizens age 65 and above. These 
models assume the existence of a small number of  “typical” or “extreme” classes of individuals and model their evolution 
over time. We regard individuals as belonging to all of these classes in different degree, by considering them as convex 
weighted combinations of the extreme classes. In this way, we are able to describe distinct general tendencies (the extreme 
cases) while accounting for the individual variability. We propose a full Bayesian specification and estimation methods 
based on Markov chain Monte Carlo sampling. We illustrate the our methods using data from the NLTCS. 
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1.  Introduction 
 

In this paper we propose models and estimation procedures to deal with discrete multivariate longitudinal data 
obtained from a heterogeneous population. This work is motivated by the analysis of data arising from the National 
Long Term Care Survey (NLTCS), a longitudinal panel survey instrument aimed to assess chronic disability among 
the elderly population in the United States. Through the analysis of the NLTCS data, researchers seek to answer 
important questions related to the aging process and disability prevalence in the U.S.: How many elder Americans 
will live with disabilities?  What is the of duration of disability episodes?  What is the age of onset of disability?  Is 
it changing for younger generations?  (see e.g. Connor et al. (2006)). Answers to these questions are of great 
importance in public policy design due to, among other reasons, the increased public and private expenditure for 
disabled people in contrast with their able peers (Manton et al., 1997).  
 
Many of the relevant public policy questions for which the NLTCS can potentially provide answers have to do with 
changes over time: changes during the life of an individual (“how is this individual likely to age?”) or comparing 
people across different generations (“are people from later generations acquiring disabilities differently than people 
born 20 years before?"). To answer these questions we need to look at the data longitudinally. In addition, elderly 
American people are known to be a heterogeneous population, as not everyone could be expected to age the same 
way. Thus models for longitudinal disability data need to be capable of representing such heterogeneity.  
 
In this paper we present models and methods for their analysis that seek to capture both the longitudinal nature of 
the NLTCS and the complexity in the heterogeneity of the human aging process, combining the ideas of mixed 
membership from the Grade of Membership model (Woodbury et al., 1978; Erosheva et al., 2007) and the 
longitudinal descriptions of the aging process from the Latent Trajectory family (Nagin 1999; Connor, 2006). We 
illustrate the methods using data from the six waves of the NLTCS.  

                                                           
1 Daniel Manrique-Vallier, Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213. 
USA; Stephen E. Fienberg, Department of Statistics and Machine Learning Department, Carnegie Mellon 
University, Pittsburgh, PA 15213. USA. 



2.  Data - The National Long Term Care Survey 
 
 

The National Long Term Care Survey (NLTCS) is a longitudinal panel survey aimed at assessing chronic disability 
among elderly population in the United States. Its target population are people aged 65 years and older that present 
functional limitations lasting or expected to last 90 or more days (White, 2008). So far the survey has gone through 
six waves conducted in 1982, 1984, 1989, 1994, 1999 and 2004. 

 
The sampling frame of the NLTCS is the Medicare record system, which provides a good representation of the 
elderly population of the U.S. since near 97% of Americans aged 65 or older are included in it (Corder and Manton, 
1991). After an initial selection, according to a complex sample design, every individual in the sample is screened to 
detect if he or she presents a functional limitation. Those who are screened-in are then given a detailed 
questionnaire, and re-interviewed at each survey wave until they die. Those who were screened-out are re-screened 
on subsequent waves to check if their functional status has changed. At each wave, a new cohort (approx. 5,000 
individuals) is sampled to replace those who died, so that the sample size for each wave is kept at around 20,000 
individuals (Clark, 1998). So far 45,009 unique individuals have been interviewed, considering all waves. 
 
The NLTCS approaches disability through the measurement of each individual’s capacity to perform a set of six 
“Activities of Daily Living" (ADL) such as eating, bathing or dressing and ten “Instrumental Activities of Daily 
Living" (IADL) such as preparing meals or maintaining finances. Broadly stated, ADLs seek to measure a person’s 
ability to take care of him or herself at a fundamental level, while IADLs measure the ability of living independently 
within a community (Connor, 2006). The survey instrument registers these measurements as a series of answers to 
triggering questions that are then summarized into a set of binary responses. These binary responses indicate the 
presence or absence of impairments to perform such activities. 

 
 

3. Methods 
 
The goal of our analysis is to characterize typical progressions of acquisition of disabilities over time, while taking 
into consideration and characterizing the heterogeneity of the population. We have proceeded by combining two 
previously employed methods.  
 
The first method is the latent trajectory model (Nagin, 1999), which is specially well suited in applications where the 
researcher wants to understand typical evolutions over time and suspects that the population is heterogeneous but a 
small number of homogeneous classes might exist. Connor (2006) adapted this technique for the analysis of 
multivariate discrete data and applied it to the NLTCS analysis, identifying latent trajectory curves of probability of 
acquiring a disability over time. This tool provides a flexible and easy to interpret representation of the data that 
allows for latent heterogeneity in the population, handling it by clustering the population into exclusive classes. In 
Connor’s formulation, this assumption essentially says that, within a class, every single individual responds to the 
exact same underlying aging process. All the response variability within class is thus attributed to random 
fluctuations within that class, disregarding the fact that these classes are ideals to which quite possibly no real 
individuals actually belong (Kreuter and Muthén, 2008). 
 
The Grade of Membership (GoM) family of models (Woodbury et al., 1978; Erosheva et al., 2007) provides a 
conceptually attractive way relaxing this assumption. Instead of forcing every single individual into one and only 
one class, the GoM model seeks to identify pure types or extreme profiles and then assumes that every individual 
belongs to more than one of them in different degree. In this way it retains the interpretative power of specifying a 
reduced number of “typical" or “extreme" profiles but adds extra flexibility by not assuming exclusive membership. 
 
3.1 Notation and setup 
 
We will use the following notation and structure: 

1. There are N subjects in the sample, indexed by i, and Ni measurements for each subject i∈{1,...,N}; 



2. For each individual, we measure J binary variables simultaneously in each measurement event. The manifest 
response vector for individual i and question j is * 1( ,..., )

iij ij ijNy y y= 2; 

3. Each individual has an associated covariate vector Xi.. In this application we will only consider a vector of 

time dependent covariates * 1( ,..., )
ii i iNX XX =

, although time invariant and other more complicated 
structures of covariates can also be considered. 

 
3.2 A Grade of Membership multivariate trajectory model 
 
We start modeling the marginal distribution of the response to question j∈{1,...,J} at measurement time t 
∈ {1,...,Νι}, yijt, for a full member of extreme profile k (i.e. an individual i such that gik=1 and gik'=0 for k'≠k) as a 
function of some covariates registered at time t, Xit, 

 ( )1,ijt ijt ik iPr Y y g X= =  =  ( )
|j k ijt itf y Xθ   

and model the same marginal distribution of response for a generic individual with membership vector 
* 1( ,..., )i i iKG g g=  as the convex combination,  

( )* 1 *( , ..., ),ijt ijt i i iK iPr Y y G g g X= = =  |
1

( |
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g f y Xθ
=

∑ )   

Now, assuming that conditional on the membership vector, gi, and the covariates, Xi*, the responses are independent 
between items and measurements, 

( )** ** * 1( ,..., ),i i i i iK iPr Y y G g g X= = t  =  |
11 1

( |
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which combined with the assumption of random sampling gives us the joint model 

 ( )*** *** ** **,Pr Y y g X=  =  |
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j k
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This model is similar to the joint latent class trajectory model proposed by Connor (2006) where we are generalizing 
the clustering from full membership (i.e. 1ikg =  for some k) to mixed membership. 

Following Connor (2006), in this implementation we choose the distribution function |
( | )

j k if y Xθ  for the single 

response of pure-type individual of extreme profile k as  ( )|

1
* | |( | ) ( ) 1 ( ) ijtijt

j k

yy
ijt i jt k it jt k itf y X X Xθ λ λ

−
= − with 

( )1
| 0 | 1 |( )jt k it j k j k itX logit Ageλ β β−= + , where itAge  is the age of the ith individual at measurement time t. Note that 

under this specification, |jt kλ  is actually a time dependent function. This specification has the advantage of being 
relatively simple, with just 2×J parameters per extreme profile and of representing the intuitively sound notion that 
the underlying probability of disability is a monotonic (increasing) function of age. Other specifications are certainly 
possible. 
 
We regard the N membership vectors, *ig , to be iid realizations from a common distribution, Gα , with support on 
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the K−1 dimensional unit simplex, 1K −Δ . Similar to Erosheva et al. (2007), we model that distribution 
as * | (iid

ig Dirichlet ).α α∼  

The Dirichlet distribution in this setting has some important properties. In the first place, it is conjugate to the 
multinomial distribution, facilitating a great deal the computations using Gibbs samplers; second, adopting the re-

parametrization 0 1 0( ,..., )Kα α ξ α ξ= ⋅ ⋅  with 0 0α > , 0kξ >  and 1kk
ξ =∑  we can interpret the vector ξ∗ as the 

average proportion of the population in the k-th extreme profile and 0α  as a parameter governing the spread of the 
distribution: as 0α  approaches 0, the samples from Gα  are more and more concentrated towards the vertices of 

1K −Δ  and; as 0α  increases they are more concentrated near the distribution's average.  

As Erosheva et al. (2007) and Airoldi et al. (2007) discuss, a priori setting the parameters α for the Dirichlet 
distribution might be too strong an assumption to do realistic modeling. We will estimate these parameters from the 
data specifying hyper-priors and computing posterior distributions. For this purpose we use hyper priors for α0 and 
ξ∗ similar to the ones in Erosheva (2002) and Erosheva et al. (2007): α~Gamma(τ,η), ξ~Dirichlet((1,...,1)k)  

(Uniform over ΔK-1) and complete the specification with the priors 
2

0 | 0 0( , )iid
j k Nβ μ σ∼   and 

2
1 | 1 1( , )iid

j k Nβ μ σ∼  , 
with β0 independent from β1. 
 

 
4. Results 

 
To test our methods, we have applied them to data from six waves from the NLTCS (N=45,009), analyzing the 
responses for the six ADLs3 (J=6) using a total of K=3 extreme profiles. The posterior estimation has been 
performed using a custom Markov chain Monte Carlo (MCMC) algorithm based on a latent class representation first 
proposed by Erosheva (2002) and Erosheva et al. (2008). For this application we have chosen the priors 

0 | 1 |, (0,100)iid
j k j k Nβ β ∼   and 0 (1,5)Gammaα ∼ . 

 
Figure 4-1 shows the curves of the estimated posterior probability of acquiring a disability in each ADL (only four 
are shown) as a function of age, for the ideal members of the three extreme profiles, similar to the ones in Connor 
(2006). They appear reflect some desirable features: the slopes of all extreme profiles are positive, showing the 
expected increasing tendency of the probability of suffering a disability as time passes and the ages where the 
idealized individuals of the extreme profiles reach a probability of 0.5 of acquiring a disability are within reasonable 
ranges. Also, the posterior distribution of the parameters are quite concentrated around a central value (not shown), 
opposed to their prior specification. From the picture, we can see that the method has identified three well separated 
profiles that reflect quite different aging processes: a class of people that live relatively healthy until very late (k=1); 
a class of people that remain healthy until around the age of 85, when they experiment a sudden increase in their 
probability of acquiring disabilities (k=2) and; a class of people that have an early increase of the probability of 
getting disabled (k=3).  
 
Table 4-1 shows point estimates (posterior means) for parameters α0 and ξ, reflecting how particular individuals 
age, opposed to the ideal ones. Parameter estimate ξ∗  = (0.65, 0.25, 0.1) indicates the relative order of importance of 
each of the three extreme profiles, showing that more people are closer to profile k=1, followed by k=2 and k=3. 
Parameter estimate α0 = 0.264 indicates that the distribution over the population is quite concentrated towards the 
vertices of the simplex ΔK-1, although not as much to make the model behave like a regular mixture model. Figure 4-
2 shows an example of how the individual trajectories are formed from the extreme profiles.  As can be seen, the 
model is quite flexible, allowing quite varied individual trajectories, but extracting just a few simple extreme curves 
that are easy to characterize and interpret. 
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Figure 4-1 
Trajectories of the probability of acquiring a disability in the first four ADLs, for ideal members of each 
extreme profile (K=3 extreme profiles) over time 
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The intersection of the straight lines indicates the point where the probability of acquiring a disability for ADL j 
reaches 50%. 
 
Figure 4-2 
Example of the individual-level mixture of trajectories for ADL j=2 (getting in or out of bed) 
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k=2 
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k=3 
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The plot on the right superimposes the three extreme trajectories and presents a sample of 100 individual 
trajectories.
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Table 4-1 
Posterior means for population-level parameters for model with K=3 extreme profiles 
Parameter Estimate [sd.] 

α0  0.264 [0.00489] 

(ξ1, ξ2, Ιξ3) (0.65 [0.004], 0.25 [0.003], 0.104 [0.002]) 
Numbers between brackets are posterior standard deviations. 
 
 

5.  Discussion 
 

Our preliminary results are interesting because they show the potential of our methods. In our application, using 
longitudinal data from the NLTCS, we have been able to characterize well separated and intuitively sound extreme 
profiles that can be understood as typical ways of aging, while at the same time characterizing the heterogeneity of 
the population using a very simple device that allows to construct individualized curves from the extreme profiles.  
This way of handling heterogeneity, although slightly more complicated that the one proposed in Connor (2006), 
allows us to be able to keep the number of extreme profiles low and interpretable while avoiding the introduction of 
too strong in-class homogeneity considerations.  
 
The model presented in this paper is a basic implementation of the general idea of combining complete time 
dependent trajectories using a mixed membership device. Depending on the problem at hand, there are a number of 
obvious extensions that can be worked out, some of which we are developing at the moment. In our application, the 
the NTLCS, some of these natural extensions are the inclusion of other covariates at the group membership level and 
at the extreme profile level and  the joint formulation with survival models to study the relationship of disability and 
mortality. Many of these extension will be included in Manrique-Vallier (2010). 
 
For purposes of illustration, we have chosen to illustrate the methodology with K=3 extreme profiles. More 
generally, we need to incorporate methodology for deciding on an optimal  value of K. We have carried out full 
computation for a series of values of K, running from 2 through 5. While the fit of the model, as measured in terms 
of the posterior predictive responses, increases with K, we observed less  separation of profiles for K=4 and K=5, 
and a less satisfactory interpretation of the shape and structure of the profiles. Choosing an appropriate value of K 
remains an open problem in our work that will be addressed in Manrique-Vallier (2010). 
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