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This supplement includes a sensitivity analysis of the posterior distribution of N to the

prior distribution of α; an example of the application of the NPLCM to a classical animal

abundance estimation dataset; and additional tables.

1 Sensitivity of the posterior distribution of N to the

prior distribution of α

In this section we empirically investigate the sensibility of the posterior distribution of N

to the prior distribution of the Dirichlet process parameter α > 0. Remember that if π =

(π1, π2, ...) ∼ SB(α), then π takes values on the infinite-dimensional unit simplex ∆∞, and

parameter α acts a concentration parameter: the smallest the value of α, the fastest πk

decreases to zero with k. In the limit case, taking α → 0 concentrates all the probability

mass on the first vertex of ∆∞, resulting in a degenerate distribution at π = (1, 0, 0, ...).

Thus α has complexity modulation effect in our model, with small values of α favoring sparse

mixtures, and large values favoring more complex joint distributions. In an effort for letting

the data themselves inform about the appropriate degree of sparsity required to model the
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Prior Mean N̂ Mean CI MSE Empirical
α ∼ Gamma(a, b) width Coverage
a = 0.25, b = 0.25 1935.23 868.83 49038.44 0.92
a = 1.0, b = 1.0 1938.46 882.44 48663.07 0.94
a = 10−5, b = 10−3 1934.44 866.48 49680.04 0.92
a = 10−3, b = 10−5 1933.66 861.12 49534.73 0.91
a = 1.0, b = 3.0 1937.92 872.95 49136.01 0.93
a = 3.0, b = 1.0 1949.75 910.91 47837.93 0.94
a = 0.6, b = 1.2 · 10−3 1937.13 877.08 48438.76 0.93
a = 0.0, b = 0.0 1934.94 863.46 49117.99 0.92

Table 1: Summary of simulation results over 200 experiments with N = 2000 and E[n] = 727
using the NPLCM with α ∼ Gamma(a, b) for different values of a and b.

joint distribution of capture patterns, we have followed the advice from Dunson and Xing

(2009) recommendation of endowing α with the hyper-prior distribution Gamma(a, b).

In order to study the effect of the prior specification of α under controlled circum-

stances, we have expanded the repeated sampling simulated data experiment from the main

manuscript (200 replications with N = 2000 and J = 5; refer to the main article for more

details), adding several NPLCM models with different hyper-prior parameters a and b, in-

cluding our default a = b = 0.25. Table 1 shows the results of our experiments. We see

that most results are close to one another, resulting in a repeated sampling performance

roughly equivalent. It is possible that this robustness to prior specification has to do with

the relatively large sample size used in this example. To explore this issue, we have taken ad-

vantage of the example that we develop in the next section (n = 68). There we perform our

calculations under several prior specifications (Table 3). Results also exhibit a considerable

robustness to the prior specification.
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2 An ecology example with small sample size

Different from the real-data examples already analyzed (casualties in conflicts in Kosovo

and Colombia), that dealt with human populations, capture-recapture datasets in animal

abundance studies typically detail a relatively large number of recapture occasions J , but a

small observed sample size n. Here we illustrate the application of our methods to this type

of data. To this end we have selected the now classic dataset detailing the multiple recapture

of snowshoe hares, originally analyzed by Otis et al. (1978) and subsequently re-analyzed by

several authors (e.g. Cormack, 1989; Agresti, 1994; Dorazio and Royle, 2003; Pledger, 2005).

This dataset features a very small number of uniquely captured subjects, n = 68, trapped

in J = 6 occasions. In Table 2 we reproduce the full capture history data, as obtained from

Baillargeon and Rivest (2007).

Table 3 shows our estimates using the NPLCM for a variety of prior specifications of the

α parameter. We see that most estimates are close to one another, with a point estimate

around N̂ = 77 and a posterior 95% intervals close to (70, 90). These estimates are close to

those obtained by Agresti (1994) and Dorazio and Royle (2003) with “latent class” Mh and

Mth models using random effects distributions with finite support, and are among the most

conservative estimates obtained from models that assume heterogeneity. We note that, as

these authors discuss (see also Pledger, 2005), the small sample size in this example makes

it essentially impossible to assert if the true heterogeneity structure implies the existence

of hidden sub-populations with low probability of capture. If this were the case, at small

sample-size levels these hypothetical sub-populations would be, for all practical purposes,

invisible. Our method reflects this fact by producing estimates consistent with the most

conservative estimates obtained under heterogeneity models.
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Pattern(x) nx Pattern(x) nx Pattern(x) nx Pattern(x) nx

010000 6 010101 3 101100 1 001011 1
001000 5 100100 2 110010 1 011011 1
000010 4 100010 2 101010 1 000111 1
000001 4 001001 2 000110 1 100111 1
000101 4 011001 2 100001 1 010111 1
100000 3 011101 2 010001 1 011111 1
000100 3 000011 2 110001 1 . . . 0
010100 3 111111 2 001101 1 . . . 0
010010 3 101000 1 010011 1 000000 ??

Table 2: Snowshoe hare data (J = 6, n = 68). Showing all the 33 capture patterns observed
in the sample.

Prior N̂ 95%-CI
a = 0.25, b = 0.25 76 (70, 90)
a = 10−5, b = 10−3 75 (70, 85)
a = 10−3, b = 10−5 76 (70, 88)
a = 1, b = 1 77 (70, 91)
a = 10, b = 10 77 (70, 91)
a = 1, b = 3 77 (70, 91)
a = 3, b = 1 76 (70, 90)

Table 3: Summary of results using the snowshoe hare data (J = 6, n = 68) for NPLCM
model with different priors α ∼ Gamma(a, b).
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Table 4: Casanare data (J = 15, n = 2629). Showing the all 70 capture patterns actually
observed in the sample. Note that 99.79% of the 215 cells of the contingency table are empty.

Pattern (x) nx Pattern (x) nx Pattern (x) nx Pattern (x) nx

000000001000000 1215 100001001000000 5 101001000000010 2 101011010101000 1
000010001000000 403 100011001100000 5 100010000000000 1 001000011101000 1
000000000100000 284 100001001010000 5 101001000000000 1 000001000000100 1
000010000000000 221 000011000000000 4 100001100000000 1 100001000000100 1
000010001100000 119 000001001000000 4 101000001000000 1 010001000000100 1
000001000000000 49 000011001100000 4 000110001000000 1 000101000000100 1
100000000000000 48 100010001000000 3 000011001000000 1 000101100000100 1
000010000100000 46 100011001000000 3 001000011000000 1 100101100000100 1
100000001000000 37 000010001010000 3 100001000100000 1 000100001000100 1
000000000010000 30 000001001010000 3 000011000100000 1 000110001000100 1
000000001100000 20 000000001100100 3 100010001100000 1 100000101000100 1
100001000000000 19 001000001000010 3 001010001100000 1 000100000010100 1
100001000010000 10 100000000100000 2 000001001100000 1 101000001000010 1
001000000000010 10 100010000100000 2 100000001010000 1 001010001100010 1
000000001010000 9 000001000100000 2 000000000110000 1 001000011000110 1
000001000010000 6 100000001100000 2 100001001110000 1 101001000101011 1
000000001000100 6 000010000000100 2 001010001001000 1 . . . . . .
001000001000000 5 100001000010100 2 101000010101000 1 000000000000000 ??

3 Additional tables

In Table 4 we reproduce the Casanare data used in Section 5.3.
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